-
Wood-based electronics that fold Nat. Electron. (IF 33.7) Pub Date : 2024-11-15 Katharina Zeissler
The researchers — who are based at Nanjing Forestry University, the Nanjing University of Science and Technology, the Northeast Forestry University, South China Agricultural University and Scion — used a transparent wood film substrate and a conductive cellulose-based ink to fabricate flexible electronics that can be bent, folded and rolled. To make the transparent substrate, a delignification process
-
Integration of high-κ native oxides of gallium for two-dimensional transistors Nat. Electron. (IF 33.7) Pub Date : 2024-11-15 Kongyang Yi, Wen Qin, Yamin Huang, Yao Wu, Shaopeng Feng, Qiyi Fang, Xun Cao, Ya Deng, Chao Zhu, Xilu Zou, Kah-Wee Ang, Taotao Li, Xinran Wang, Jun Lou, Keji Lai, Zhili Hu, Zhuhua Zhang, Yemin Dong, Kourosh Kalantar-Zadeh, Zheng Liu
-
Piezoelectric biomaterials printed on the fly Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Katharina Zeissler
The researchers — who are based at the Hong Kong University of Science and Technology, the City University of Hong Kong and the École Polytechnique Fédérale de Lausanne — tune the spatial organization of biomolecular inks through electrohydrodynamic aerosolization and in situ electrical poling. Films printed from β-glycine–polyvinylpyrrolidone have a piezoelectric voltage coefficient of 190 × 10−3
-
Defects make better semiconductors Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Matthew Parker
The researchers — who are based at the University of Illinois Urbana-Champaign — show that in certain compound semiconductors the defects self-organize into electrically neutral complexes. These push deep-level traps closer to the conduction band edge, where they act as donors. So rather than degrade performance, the CuIn5Se8 field-effect transistors with introduced defects show better performance
-
Creating sound bubbles with intelligent headsets Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Dong Ma
-
Hearable devices with sound bubbles Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Tuochao Chen, Malek Itani, Sefik Emre Eskimez, Takuya Yoshioka, Shyamnath Gollakota
-
Publisher Correction: High-performance p-type field-effect transistors using substitutional doping and thickness control of two-dimensional materials Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Mayukh Das, Dipanjan Sen, Najam U Sakib, Harikrishnan Ravichandran, Yongwen Sun, Zhiyu Zhang, Subir Ghosh, Pranavram Venkatram, Shiva Subbulakshmi Radhakrishnan, Alexander Sredenschek, Zhuohang Yu, Kalyan Jyoti Sarkar, Muhtasim Ul Karim Sadaf, Kalaiarasan Meganathan, Andrew Pannone, Ying Han, David Emanuel Sanchez, Divya Somvanshi, Zdenek Sofer, Mauricio Terrones, Yang Yang, Saptarshi Das
Correction to: Nature Electronics https://doi.org/10.1038/s41928-024-01265-2, published online 6 November 2024.
-
Noise reveals single defects in boron nitride Nat. Electron. (IF 33.7) Pub Date : 2024-11-13 Matthew Parker
By examining how the noise changed at varying temperature and gate biases, the researchers — who are based at New York University, the Korea Advanced Institute of Science and Technology, King Abdulaziz City for Science and Technology, Brookhaven National Laboratory and the National Institute for Materials Science — could attribute the origins of the random telegraph signals to a single trap species
-
Polarization detection in miniature Nat. Electron. (IF 33.7) Pub Date : 2024-11-13 Fan Zhang, Fengnian Xia
-
A universal neuromorphic vision processing system Nat. Electron. (IF 33.7) Pub Date : 2024-11-12 Hongwei Tan, Sebastiaan van Dijken
-
Reconfigurable in-sensor processing based on a multi-phototransistor–one-memristor array Nat. Electron. (IF 33.7) Pub Date : 2024-11-12 Bingjie Dang, Teng Zhang, Xulei Wu, Keqin Liu, Ru Huang, Yuchao Yang
-
Rapid interconnects for 3D soft electronics Nat. Electron. (IF 33.7) Pub Date : 2024-11-11 Wedyan Babatain
-
An on-chip full-Stokes polarimeter based on optoelectronic polarization eigenvectors Nat. Electron. (IF 33.7) Pub Date : 2024-11-11 Jie Deng, Mengdie Shi, Xingsi Liu, Jing Zhou, Xinyue Qin, Ruowen Wang, Yuran Zhen, Xu Dai, Yinzhu Chen, Jingxuan Wei, Zhenhua Ni, Weibo Gao, Cheng-Wei Qiu, Xiaoshuang Chen
-
The development of general-purpose brain-inspired computing Nat. Electron. (IF 33.7) Pub Date : 2024-11-07 Weihao Zhang, Songchen Ma, Xinglong Ji, Xue Liu, Yuqing Cong, Luping Shi
-
A single-transducer echomyography system for monitoring muscle activity Nat. Electron. (IF 33.7) Pub Date : 2024-11-05
-
High-performance p-type field-effect transistors using substitutional doping and thickness control of two-dimensional materials Nat. Electron. (IF 33.7) Pub Date : 2024-11-06 Mayukh Das, Dipanjan Sen, Najam U Sakib, Harikrishnan Ravichandran, Yongwen Sun, Zhiyu Zhang, Subir Ghosh, Pranavram Venkatram, Shiva Subbulakshmi Radhakrishnan, Alexander Sredenschek, Zhuohang Yu, Kalyan Jyoti Sarkar, Muhtasim Ul Karim Sadaf, Kalaiarasan Meganathan, Andrew Pannone, Ying Han, David Emanuel Sanchez, Divya Somvanshi, Zdenek Sofer, Mauricio Terrones, Yang Yang, Saptarshi Das
-
A seamless graphene spin valve based on proximity to van der Waals magnet Cr2Ge2Te6 Nat. Electron. (IF 33.7) Pub Date : 2024-11-06 Haozhe Yang, Marco Gobbi, Franz Herling, Van Tuong Pham, Francesco Calavalle, Beatriz Martín-García, Albert Fert, Luis E. Hueso, Fèlix Casanova
-
Scientific challenges in governing military AI Nat. Electron. (IF 33.7) Pub Date : 2024-11-04 WooJung Jon
The emergence of artificial intelligence (AI) in military operations is revolutionizing modern warfare — a development that demands robust governance frameworks to mitigate the risks. On 9–10 September 2024, at the Responsible AI in the Military Domain (REAIM) meeting in Seoul, South Korea, a notable advance in military AI governance was achieved. The meeting, which was co-hosted by South Korea, the
-
Scaled vertical-nanowire heterojunction tunnelling transistors with extreme quantum confinement Nat. Electron. (IF 33.7) Pub Date : 2024-11-04 Yanjie Shao, Marco Pala, Hao Tang, Baoming Wang, Ju Li, David Esseni, Jesús A. del Alamo
-
Energy-efficient computing at cryogenic temperatures Nat. Electron. (IF 33.7) Pub Date : 2024-10-31 Cezar Zota, Alberto Ferraris, Eunjung Cha, Mridula Prathapan, Peter Mueller, Effendi Leobandung
-
A wearable echomyography system based on a single transducer Nat. Electron. (IF 33.7) Pub Date : 2024-10-31 Xiaoxiang Gao, Xiangjun Chen, Muyang Lin, Wentong Yue, Hongjie Hu, Siyu Qin, Fangao Zhang, Zhiyuan Lou, Lu Yin, Hao Huang, Sai Zhou, Yizhou Bian, Xinyi Yang, Yangzhi Zhu, Jing Mu, Xinyu Wang, Geonho Park, Chengchangfeng Lu, Ruotao Wang, Ray S. Wu, Joseph Wang, Jinghong Li, Sheng Xu
-
Fractional quantum Hall phases in high-mobility n-type molybdenum disulfide transistors Nat. Electron. (IF 33.7) Pub Date : 2024-10-30 Siwen Zhao, Jinqiang Huang, Valentin Crépel, Zhiren Xiong, Xingguang Wu, Tongyao Zhang, Hanwen Wang, Xiangyan Han, Zhengyu Li, Chuanying Xi, Senyang Pan, Zhaosheng Wang, Guangli Kuang, Jun Luo, Qinxin Shen, Jie Yang, Rui Zhou, Kenji Watanabe, Takashi Taniguchi, Benjamin Sacépé, Jing Zhang, Ning Wang, Jianming Lu, Nicolas Regnault, Zheng Vitto Han
-
Light-emitting diodes based on intercalated transition metal dichalcogenides with suppressed efficiency roll-off at high generation rates Nat. Electron. (IF 33.7) Pub Date : 2024-10-28 Shixuan Wang, Qiang Fu, Ting Zheng, Xu Han, Hao Wang, Tao Zhou, Jing Liu, Tianqi Liu, Yuwei Zhang, Kaiqi Chen, Qixing Wang, Zhexing Duan, Xin Zhou, Kenji Watanabe, Takashi Taniguchi, Jiaxu Yan, Yuan Huang, Yuwei Xiong, Joel K. W. Yang, Zhenliang Hu, Tao Xu, Litao Sun, Jinhua Hong, Yujie Zheng, Yumeng You, Qi Zhang, Junpeng Lu, Zhenhua Ni
-
-
Twenty years of graphene electronics Nat. Electron. (IF 33.7) Pub Date : 2024-10-24
Graphene devices have undergone substantial development in the past two decades, but introducing new materials into commercial foundries remains problematic.
-
Soft electronic vias and interconnects through rapid three-dimensional assembly of liquid metal microdroplets Nat. Electron. (IF 33.7) Pub Date : 2024-10-24 Dong Hae Ho, Chenhao Hu, Ling Li, Michael D. Bartlett
-
-
CMOS-compatible strain engineering for monolayer semiconductor transistors Nat. Electron. (IF 33.7) Pub Date : 2024-10-23 Marc Jaikissoon, Çağıl Köroğlu, Jerry A. Yang, Kathryn Neilson, Krishna C. Saraswat, Eric Pop
-
Optical interconnect chips at low cost Nat. Electron. (IF 33.7) Pub Date : 2024-10-21 Katharina Zeissler
The researchers — who are based at Hewlett Packard Enterprise and the University of Michigan — fabricated eight-channel double-microring-resonator avalanche photodiodes with a responsivity of 0.4 A W–1, a dark current of 1 nA and a bandwidth of 40 GHz at −8 V. Each channel has a transmission data rate of 160 gigabits per second and low electrical crosstalk of less than −50 dB. The all-silicon receiver
-
Computing with molecular memristors Nat. Electron. (IF 33.7) Pub Date : 2024-10-21 Matthew Parker
The memristors consist of two gold electrodes and a 60-nm-thick molecular film of an azo-aromatic complex centred on a ruthenium atom. Precise kinetic control between thermodynamically stable molecular electronic states with different resistances allowed the memristor to access thousands of analogue conductance levels. A 64 × 64 crossbar array of the memristors was used to perform inverse Fourier transforms
-
Superconducting qubits at scale Nat. Electron. (IF 33.7) Pub Date : 2024-10-21 Katharina Zeissler
The researchers — who are based at Imec and KU Leuven — fabricated transmon-style qubits with aluminium/aluminium oxide/aluminium overlap Josephson junctions using only optical lithography and reactive-ion etching. They characterized 400 qubits and 12,840 Josephson junctions across the entire wafer, reporting a yield of 98.25% and a time-averaged median relaxation time of 75 μs. The ageing of the Josephson
-
Memristors with analogue switching and high on/off ratios using a van der Waals metallic cathode Nat. Electron. (IF 33.7) Pub Date : 2024-10-21 Yesheng Li, Yao Xiong, Xiaolin Zhang, Lei Yin, Yiling Yu, Hao Wang, Lei Liao, Jun He
-
A digitally embroidered metamaterial biosensor for kinetic environments Nat. Electron. (IF 33.7) Pub Date : 2024-10-17 Qihang Zeng, Xi Tian, Dat T. Nguyen, Chenhui Li, Patrick Chia, Benjamin C. K. Tee, Changsheng Wu, John S. Ho
-
The commercialization of graphene electronics Nat. Electron. (IF 33.7) Pub Date : 2024-10-16 Kari Hjelt, Henning Döscher
-
Fuzzy logic with two-dimensional interfacial junction transistors Nat. Electron. (IF 33.7) Pub Date : 2024-10-15 Langlang Xu, Xinyu Huang, Lei Ye
-
A van der Waals interfacial junction transistor for reconfigurable fuzzy logic hardware Nat. Electron. (IF 33.7) Pub Date : 2024-10-15 Hefei Liu, Jiangbin Wu, Jiahui Ma, Xiaodong Yan, Ning Yang, Xu He, Yangu He, Hongming Zhang, Ting-Hao Hsu, Justin H. Qian, Jing Guo, Mark C. Hersam, Han Wang
-
Monolithic 3D integration with 2D materials Nat. Electron. (IF 33.7) Pub Date : 2024-10-09 Sangmoon Han, Ji-Yun Moon, Sang-Hoon Bae
-
Monolithic and heterogeneous three-dimensional integration of two-dimensional materials with high-density vias Nat. Electron. (IF 33.7) Pub Date : 2024-10-09 Subir Ghosh, Yikai Zheng, Zhiyu Zhang, Yongwen Sun, Thomas F. Schranghamer, Najam U Sakib, Aaryan Oberoi, Chen Chen, Joan M. Redwing, Yang Yang, Saptarshi Das
-
A wearable in-sensor computing platform based on stretchable organic electrochemical transistors Nat. Electron. (IF 33.7) Pub Date : 2024-10-02 Dingyao Liu, Xinyu Tian, Jing Bai, Shaocong Wang, Shilei Dai, Yan Wang, Zhongrui Wang, Shiming Zhang
-
How we made the 1,000 V silicon carbide Schottky diode Nat. Electron. (IF 33.7) Pub Date : 2024-09-30 Tsunenobu Kimoto
-
Electrical switching of the perpendicular Néel order in a collinear antiferromagnet Nat. Electron. (IF 33.7) Pub Date : 2024-09-30 Wenqing He, Tianyi Zhang, Yongjian Zhou, Caihua Wan, Hao Wu, Baoshan Cui, Jihao Xia, Ran Zhang, Tengyu Guo, Peng Chen, Mingkun Zhao, Leina Jiang, Alexander Grutter, Purnima P. Balakrishnan, Andrew J. Caruana, Christy J. Kinane, Sean Langridge, Guoqiang Yu, Cheng Song, Xiufeng Han
-
An update for brain–computer interfaces Nat. Electron. (IF 33.7) Pub Date : 2024-09-25
Advances in sensors, electrodes and probes are helping to expand the capabilities of brain–computer interfaces.
-
Author Correction: A microspectrometer with dual-signal spectral reconstruction Nat. Electron. (IF 33.7) Pub Date : 2024-09-24 Xinchuan Du, Yang Wang, Yi Cui, Gaofeng Rao, Jianwen Huang, Xinrui Chen, Ting Zhou, Chunyang Wu, Zongyin Yang, Hanxiao Cui, Yicheng Zhao, Jie Xiong
Correction to: Nature Electronics https://doi.org/10.1038/s41928-024-01242-9, published online 17 September 2024.
-
Hybrid multimodal wearable sensors for comprehensive health monitoring Nat. Electron. (IF 33.7) Pub Date : 2024-09-23 Kuldeep Mahato, Tamoghna Saha, Shichao Ding, Samar S. Sandhu, An-Yi Chang, Joseph Wang
-
A self-filtering liquid acoustic sensor for voice recognition Nat. Electron. (IF 33.7) Pub Date : 2024-09-23 Xun Zhao, Yihao Zhou, Aaron Li, Jing Xu, Shreesh Karjagi, Edward Hahm, Lara Rulloda, Justin Li, John Hollister, Pirouz Kavehpour, Jun Chen
-
Flexible strain gauges that can be picked and placed Nat. Electron. (IF 33.7) Pub Date : 2024-09-18 Matthew Parker
Each sensor consists of multiple micro-strain gauges containing a stressed layer of silicon dioxide that, after the stress is released by dissolving a sacrificial layer, deforms into a three-dimensional geometry. Thin metal or alloy wires on the strain gauges can measure normal force, shear force and temperature. Because the sensors are made by standard processes used in microelectromechanical system
-
Two-dimensional transistors heat up Nat. Electron. (IF 33.7) Pub Date : 2024-09-18 Stuart Thomas
The researchers — who are based at the Institute of Metal Research in Shenyang China, the University of Science and Technology of China, Peking University and the Shenzhen Institute of Advanced Technology — fabricated micrometre-scale devices using a p-type germanium substrate as the current collector and two separate monolayer graphene emitter and base layers placed on top. Under bias, stimulated
-
A sense of touch without skin Nat. Electron. (IF 33.7) Pub Date : 2024-09-18 Katharina Zeissler
The researchers — who are based at the German Aerospace Center and Technical University of Munich — created a mechatronic design for sensing redundancy, where the number of sensor measurements exceeds the number of possible motions of the robotic arm, and combined it with a momentum-based monitoring method to provide the arm with an intrinsic sense of touch across its surface. Two force-torque sensors
-
Magnesium niobate as a high-κ gate dielectric for two-dimensional electronics Nat. Electron. (IF 33.7) Pub Date : 2024-09-18 Cheng-Yi Zhu, Meng-Ru Zhang, Qing Chen, Lin-Qing Yue, Rong Song, Cong Wang, Hui-Zhen Li, Feichi Zhou, Yang Li, Weiwei Zhao, Liang Zhen, Mengwei Si, Jia Li, Jingli Wang, Yang Chai, Cheng-Yan Xu, Jing-Kai Qin
-
A microspectrometer with dual-signal spectral reconstruction Nat. Electron. (IF 33.7) Pub Date : 2024-09-17 Xinchuan Du, Yang Wang, Yi Cui, Gaofeng Rao, Jianwen Huang, Xinrui Chen, Ting Zhou, Chunyang Wu, Zongyin Yang, Hanxiao Cui, Yicheng Zhao, Jie Xiong
-
A closed-loop neurostimulation device that reaches new levels Nat. Electron. (IF 33.7) Pub Date : 2024-09-11 Mengge Wu, Kuanming Yao, Xinge Yu
-
A shape-morphing cortex-adhesive sensor for closed-loop transcranial ultrasound neurostimulation Nat. Electron. (IF 33.7) Pub Date : 2024-09-11 Sungjun Lee, Jeungeun Kum, Sumin Kim, Hyunjin Jung, Soojung An, Soon Jin Choi, Jae Hyuk Choi, Jinseok Kim, Ki Jun Yu, Wonhye Lee, Hyeok Kim, Hyung-Seop Han, Mikyung Shin, Hyungmin Kim, Donghee Son
-
Sweat sensing at your fingertips Nat. Electron. (IF 33.7) Pub Date : 2024-09-03 Zhaofeng Ouyang, Shuo Wang, Yan Wang, Hao Sun
-
An ultrathin organic–inorganic integrated device for optical biomarker monitoring Nat. Electron. (IF 33.7) Pub Date : 2024-09-03 Kyung Yeun Kim, Joohyuk Kang, Sangmin Song, Kyungwoo Lee, Suk-Won Hwang, Seung Hwan Ko, Hojeong Jeon, Jae-Hoon Han, Wonryung Lee
-
A fingertip-wearable microgrid system for autonomous energy management and metabolic monitoring Nat. Electron. (IF 33.7) Pub Date : 2024-09-03 Shichao Ding, Tamoghna Saha, Lu Yin, Ruixiao Liu, Muhammad Inam Khan, An-Yi Chang, Hyungjin Lee, Han Zhao, Yuanzhe Liu, Ariane Sina Nazemi, Jiachi Zhou, Chuanrui Chen, Zhengxing Li, Chenyang Zhang, Sara Earney, Selene Tang, Omeed Djassemi, Xiangjun Chen, Muyang Lin, Samar S. Sandhu, Jong-Min Moon, Chochanon Moonla, Ponnusamy Nandhakumar, Youngmin Park, Kuldeep Mahato, Sheng Xu, Joseph Wang
-
Continuing challenges in 2D semiconductors Nat. Electron. (IF 33.7) Pub Date : 2024-08-28
The further development of transistors based on two-dimensional transition metal dichalcogenides faces various issues, starting with the high density of defects typically found in the materials.
-
A tactile oral pad based on carbon nanotubes for multimodal haptic interaction Nat. Electron. (IF 33.7) Pub Date : 2024-08-28 Bo Hou, Dingzhu Yang, Xiaoyuan Ren, Luying Yi, Xiaogang Liu
-
Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy Nat. Electron. (IF 33.7) Pub Date : 2024-08-26 Yaqing Shen, Kaichen Zhu, Yiping Xiao, Dominic Waldhör, Abdulrahman H. Basher, Theresia Knobloch, Sebastian Pazos, Xianhu Liang, Wenwen Zheng, Yue Yuan, Juan B. Roldan, Udo Schwingenschlögl, He Tian, Huaqiang Wu, Thomas F. Schranghamer, Nicholas Trainor, Joan M. Redwing, Saptarshi Das, Tibor Grasser, Mario Lanza
-
Author Correction: Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays Nat. Electron. (IF 33.7) Pub Date : 2024-08-20 Chen Wang, Zhesi Chen, Chak Lam Jonathan Chan, Zhu’an Wan, Wenhao Ye, Wenying Tang, Zichao Ma, Beitao Ren, Daquan Zhang, Zhilong Song, Yucheng Ding, Zhenghao Long, Swapnadeep Poddar, Weiqi Zhang, Zixi Wan, Feng Xue, Suman Ma, Qingfeng Zhou, Geyu Lu, Kai Liu, Zhiyong Fan
Correction to: Nature Electronics https://doi.org/10.1038/s41928-023-01107-7, published online 10 January 2024.
-
A probe that measures more neurons across the brain Nat. Electron. (IF 33.7) Pub Date : 2024-08-20 Katharina Zeissler
The researchers — who are based at Peking University and the Shenzhen-Hong Kong Institute of Brain Science — fabricated the probe by depositing an electrode array on an ultrathin, flexible plastic film and rolling it onto a tungsten microwire to form a cylindrical shank. The interconnecting metal lines of the probe are embedded inside the scroll while the recording electrodes and the input/output pads