-
Strategies needed to counter potential AI misuse Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-18
Researchers urgently need more guidance to help them identify and mitigate potential risks when designing projects that involve AI developments.
-
Seeking clarity rather than strong opinions on intelligence Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-18
Clear descriptions of intelligence in both living organisms and machines are essential to avoid confusion, sharpen thinking and guide interdisciplinary research. A Comment in this issue encourages researchers to answer key questions to improve clarity on the terms they use.
-
Leveraging ancestral sequence reconstruction for protein representation learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-18 D. S. Matthews, M. A. Spence, A. C. Mater, J. Nichols, S. B. Pulsford, M. Sandhu, J. A. Kaczmarski, C. M. Miton, N. Tokuriki, C. J. Jackson
-
Limitations in odour recognition and generalization in a neuromorphic olfactory circuit Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-16 Nik Dennler, André van Schaik, Michael Schmuker
-
Reply to: Limitations in odour recognition and generalization in a neuromorphic olfactory circuit Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-16 Roy Moyal, Nabil Imam, Thomas A. Cleland
-
Envisioning better benchmarks for machine learning PDE solvers Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-13 Johannes Brandstetter
Tackling partial differential equations with machine learning solvers is a promising direction, but recent analysis reveals challenges with making fair comparisons to previous methods. Stronger benchmark problems are needed for the field to advance.
-
Discussions of machine versus living intelligence need more clarity Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-13 Nicolas Rouleau, Michael Levin
-
Kernel approximation using analogue in-memory computing Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-13 Julian Büchel, Giacomo Camposampiero, Athanasios Vasilopoulos, Corey Lammie, Manuel Le Gallo, Abbas Rahimi, Abu Sebastian
-
Stable Cox regression for survival analysis under distribution shifts Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-13 Shaohua Fan, Renzhe Xu, Qian Dong, Yue He, Cheng Chang, Peng Cui
-
Reply to: Deeper evaluation of a single-cell foundation model Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-12 Fan Yang, Fang Wang, Longkai Huang, Linjing Liu, Junzhou Huang, Jianhua Yao
-
Deeper evaluation of a single-cell foundation model Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-12 Rebecca Boiarsky, Nalini M. Singh, Alejandro Buendia, Ava P. Amini, Gad Getz, David Sontag
-
Successful implementation of the EU AI Act requires interdisciplinary efforts Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-10 Christian Montag, Michèle Finck
The EU Artificial Intelligence Act bans certain “subliminal techniques beyond a person’s consciousness”, but uses undefined legal terms. Interdisciplinary efforts are needed to ensure effective implementation of the legal text.
-
An interpretable RNA foundation model for exploring functional RNA motifs in plants Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-09 Haopeng Yu, Heng Yang, Wenqing Sun, Zongyun Yan, Xiaofei Yang, Huakun Zhang, Yiliang Ding, Ke Li
-
Evaluating generalizability of artificial intelligence models for molecular datasets Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-06 Yasha Ektefaie, Andrew Shen, Daria Bykova, Maximillian G. Marin, Marinka Zitnik, Maha Farhat
-
Learning spatiotemporal dynamics with a pretrained generative model Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-06 Zeyu Li, Wang Han, Yue Zhang, Qingfei Fu, Jingxuan Li, Lizi Qin, Ruoyu Dong, Hao Sun, Yue Deng, Lijun Yang
-
Towards a personalized AI assistant to learn machine learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-05 Pascal Wallisch, Ibrahim Sheikh
-
-
LLM-based agentic systems in medicine and healthcare Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-05 Jianing Qiu, Kyle Lam, Guohao Li, Amish Acharya, Tien Yin Wong, Ara Darzi, Wu Yuan, Eric J. Topol
-
Modulating emotional states of rats through a rat-like robot with learned interaction patterns Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-05 Guanglu Jia, Zhe Chen, Yulai Zhang, Zhenshan Bing, Zhenzhen Quan, Xuechao Chen, Alois Knoll, Qiang Huang, Qing Shi
-
Nanobody–antigen interaction prediction with ensemble deep learning and prompt-based protein language models Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-05 Juntao Deng, Miao Gu, Pengyan Zhang, Mingyu Dong, Tao Liu, Yabin Zhang, Min Liu
-
Deep learning at the forefront of detecting tipping points Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-04 Smita Deb, Partha Sharathi Dutta
-
AI in biomaterials discovery: generating self-assembling peptides with resource-efficient deep learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-12-02 Tianang Leng, Cesar de la Fuente-Nunez
-
A plea for caution and guidance about using AI in genomics Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-29 Mohammad Hosseini, Christopher R. Donohue
The incorporation of artificial intelligence (AI) into genetics and genomics research can enable research that would have been otherwise impossible. However, these benefits must be considered together with the potential risks to humans, other sentient beings, and the environment. Genetic and genomic advances require much trial and error to succeed; this is ethically fraught when the consequences are
-
Deep learning for predicting rate-induced tipping Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-28 Yu Huang, Sebastian Bathiany, Peter Ashwin, Niklas Boers
-
Self-decoupling three-axis forces in a simple sensor Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-27 Kuanming Yao, Qiuna Zhuang
-
Multimodal language and graph learning of adsorption configuration in catalysis Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-27 Janghoon Ock, Srivathsan Badrinarayanan, Rishikesh Magar, Akshay Antony, Amir Barati Farimani
-
Contextual feature extraction hierarchies converge in large language models and the brain Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-26 Gavin Mischler, Yinghao Aaron Li, Stephan Bickel, Ashesh D. Mehta, Nima Mesgarani
-
Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-26 Artem A. Trotsyuk, Quinn Waeiss, Raina Talwar Bhatia, Brandon J. Aponte, Isabella M. L. Heffernan, Devika Madgavkar, Ryan Marshall Felder, Lisa Soleymani Lehmann, Megan J. Palmer, Hank Greely, Russell Wald, Lea Goetz, Markus Trengove, Robert Vandersluis, Herbert Lin, Mildred K. Cho, Russ B. Altman, Drew Endy, David A. Relman, Margaret Levi, Debra Satz, David Magnus
-
AI pioneers win 2024 Nobel prizes Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-22
The 2024 Nobel prizes in physics and chemistry highlight the interdisciplinary nature and impact of AI in science.
-
Machine learning for practical quantum error mitigation Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-22 Haoran Liao, Derek S. Wang, Iskandar Sitdikov, Ciro Salcedo, Alireza Seif, Zlatko K. Minev
-
Efficient rare event sampling with unsupervised normalizing flows Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-19 Solomon Asghar, Qing-Xiang Pei, Giorgio Volpe, Ran Ni
-
Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-19 Marko Njirjak, Lucija Žužić, Marko Babić, Patrizia Janković, Erik Otović, Daniela Kalafatovic, Goran Mauša
-
A soft skin with self-decoupled three-axis force-sensing taxels Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-19 Youcan Yan, Ahmed Zermane, Jia Pan, Abderrahmane Kheddar
-
Clinical large language models with misplaced focus Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-18 Zining Luo, Haowei Ma, Zhiwu Li, Yuquan Chen, Yixin Sun, Aimin Hu, Jiang Yu, Yang Qiao, Junxian Gu, Hongying Li, Xuxi Peng, Dunrui Wang, Ying Liu, Zhenglong Liu, Jiebin Xie, Zhen Jiang, Gang Tian
On 12 September 2024, OpenAI released two new large language models (LLMs) — o1-preview and o1-mini — marking an important shift in the competitive landscape of commercial LLMs, particularly concerning their reasoning capabilities. Since the introduction of GPT-3.5, OpenAI has launched 31 LLMs in two years. Researchers are rapidly applying these evolving commercial models in clinical medicine, achieving
-
Efficient generation of protein pockets with PocketGen Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-15 Zaixi Zhang, Wan Xiang Shen, Qi Liu, Marinka Zitnik
-
Fast and generalizable micromagnetic simulation with deep neural nets Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-14 Yunqi Cai, Jiangnan Li, Dong Wang
-
Guidelines for ethical use and acknowledgement of large language models in academic writing Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-13 Sebastian Porsdam Mann, Anuraag A. Vazirani, Mateo Aboy, Brian D. Earp, Timo Minssen, I. Glenn Cohen, Julian Savulescu
In this Comment, we propose a cumulative set of three essential criteria for the ethical use of LLMs in academic writing, and present a statement that researchers can quote when submitting LLM-assisted manuscripts in order to testify to their adherence to them.
-
Foundation models in healthcare require rethinking reliability Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-11 Thomas Grote, Timo Freiesleben, Philipp Berens
A new class of AI models, called foundation models, has entered healthcare. Foundation models violate several basic principles of the standard machine learning paradigm for assessing reliability, making it necessary to rethink what guarantees are required to establish warranted trust in them.
-
Reusability report: exploring the utility of variational graph encoders for predicting molecular toxicity in drug design Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-08 Ruijiang Li, Jiang Lu, Ziyi Liu, Duoyun Yi, Mengxuan Wan, Yixin Zhang, Peng Zan, Song He, Xiaochen Bo
-
General-purpose foundation models for increased autonomy in robot-assisted surgery Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-01 Samuel Schmidgall, Ji Woong Kim, Alan Kuntz, Ahmed Ezzat Ghazi, Axel Krieger
-
Results from the autoPET challenge on fully automated lesion segmentation in oncologic PET/CT imaging Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-30 Sergios Gatidis, Marcel Früh, Matthias P. Fabritius, Sijing Gu, Konstantin Nikolaou, Christian La Fougère, Jin Ye, Junjun He, Yige Peng, Lei Bi, Jun Ma, Bo Wang, Jia Zhang, Yukun Huang, Lars Heiliger, Zdravko Marinov, Rainer Stiefelhagen, Jan Egger, Jens Kleesiek, Ludovic Sibille, Lei Xiang, Simone Bendazzoli, Mehdi Astaraki, Michael Ingrisch, Clemens C. Cyran, Thomas Küstner
-
Deep learning prediction of ribosome profiling with Translatomer reveals translational regulation and interprets disease variants Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-23 Jialin He, Lei Xiong, Shaohui Shi, Chengyu Li, Kexuan Chen, Qianchen Fang, Jiuhong Nan, Ke Ding, Yuanhui Mao, Carles A. Boix, Xinyang Hu, Manolis Kellis, Jingyun Li, Xushen Xiong
-
Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-22 Yumeng Zhang, Zhikang Wang, Yunzhe Jiang, Dene R. Littler, Mark Gerstein, Anthony W. Purcell, Jamie Rossjohn, Hong-Yu Ou, Jiangning Song
-
Pick your AI poison Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-21
Distinguishing between real and fabricated facts has long been a societal challenge. As the Internet becomes increasingly littered with AI-generated content, the need for curation and safeguarding of high-quality data and information is more crucial than ever.
-
Leveraging language model for advanced multiproperty molecular optimization via prompt engineering Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-21 Zhenxing Wu, Odin Zhang, Xiaorui Wang, Li Fu, Huifeng Zhao, Jike Wang, Hongyan Du, Dejun Jiang, Yafeng Deng, Dongsheng Cao, Chang-Yu Hsieh, Tingjun Hou
-
Blending neural operators and relaxation methods in PDE numerical solvers Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-17 Enrui Zhang, Adar Kahana, Alena Kopaničáková, Eli Turkel, Rishikesh Ranade, Jay Pathak, George Em Karniadakis
-
Estimation of causal effects of genes on complex traits using a Bayesian-network-based framework applied to GWAS data Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-17 Liangying Yin, Yaning Feng, Yujia Shi, Alexandria Lau, Jinghong Qiu, Pak-Chung Sham, Hon-Cheong So
-
A multi-modal deep language model for contaminant removal from metagenome-assembled genomes Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-07 Bohao Zou, Jingjing Wang, Yi Ding, Zhenmiao Zhang, Yufen Huang, Xiaodong Fang, Ka Chun Cheung, Simon See, Lu Zhang
-
A call for an industry-led initiative to critically assess machine learning for real-world drug discovery Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-04 Cas Wognum, Jeremy R. Ash, Matteo Aldeghi, Raquel Rodríguez-Pérez, Cheng Fang, Alan C. Cheng, Daniel J. Price, Djork-Arné Clevert, Ola Engkvist, W. Patrick Walters
Machine learning (ML) is driving exciting innovations in drug discovery, but we need to be mindful of the circumstances that set this application apart. Unlike other fields with fit-for-purpose datasets consisting of millions of examples, published datasets in drug discovery are classically heterogeneous, imbalanced, noisy and expensive to generate1. Furthermore, the applications of ML in drug discovery
-
Engineering flexible machine learning systems by traversing functionally invariant paths Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-03 Guruprasad Raghavan, Bahey Tharwat, Surya Narayanan Hari, Dhruvil Satani, Rex Liu, Matt Thomson
-
Soft robotic shorts improve outdoor walking efficiency in older adults Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-01 Enrica Tricomi, Francesco Missiroli, Michele Xiloyannis, Nicola Lotti, Xiaohui Zhang, Marios Stefanakis, Maximilian Theisen, Jürgen Bauer, Clemens Becker, Lorenzo Masia
-
Reusability report: Annotating metabolite mass spectra with domain-inspired chemical formula transformers Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-27 Janne Heirman, Wout Bittremieux
-
Sliding-attention transformer neural architecture for predicting T cell receptor–antigen–human leucocyte antigen binding Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-27 Ziyan Feng, Jingyang Chen, Youlong Hai, Xuelian Pang, Kun Zheng, Chenglong Xie, Xiujuan Zhang, Shengqing Li, Chengjuan Zhang, Kangdong Liu, Lili Zhu, Xiaoyong Hu, Shiliang Li, Jie Zhang, Kai Zhang, Honglin Li
-
Machine learning for data-centric epidemic forecasting Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-27 Alexander Rodríguez, Harshavardhan Kamarthi, Pulak Agarwal, Javen Ho, Mira Patel, Suchet Sapre, B. Aditya Prakash
-
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-26 Anthony Bilodeau, Albert Michaud-Gagnon, Julia Chabbert, Benoit Turcotte, Jörn Heine, Audrey Durand, Flavie Lavoie-Cardinal
-
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-25 Nick McGreivy, Ammar Hakim
-
A multiscale approach for biomedical machine learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20
New multi-modal AI methods fuse different biological data types that span multiple scales, offering promising clinical utility.
-
Zero-shot transfer of protein sequence likelihood models to thermostability prediction Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20 Shawn Reeves, Subha Kalyaanamoorthy
-
Poisoning medical knowledge using large language models Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20 Junwei Yang, Hanwen Xu, Srbuhi Mirzoyan, Tong Chen, Zixuan Liu, Zequn Liu, Wei Ju, Luchen Liu, Zhiping Xiao, Ming Zhang, Sheng Wang
-
Wing-strain-based flight control of flapping-wing drones through reinforcement learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20 Taewi Kim, Insic Hong, Sunghoon Im, Seungeun Rho, Minho Kim, Yeonwook Roh, Changhwan Kim, Jieun Park, Daseul Lim, Doohoe Lee, Seunggon Lee, Jingoo Lee, Inryeol Back, Junggwang Cho, Myung Rae Hong, Sanghun Kang, Joonho Lee, Sungchul Seo, Uikyum Kim, Young-Man Choi, Je-sung Koh, Seungyong Han, Daeshik Kang