-
Efficient rare event sampling with unsupervised normalizing flows Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-19 Solomon Asghar, Qing-Xiang Pei, Giorgio Volpe, Ran Ni
-
Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-19 Marko Njirjak, Lucija Žužić, Marko Babić, Patrizia Janković, Erik Otović, Daniela Kalafatovic, Goran Mauša
-
A soft skin with self-decoupled three-axis force-sensing taxels Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-19 Youcan Yan, Ahmed Zermane, Jia Pan, Abderrahmane Kheddar
-
Clinical large language models with misplaced focus Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-18 Zining Luo, Haowei Ma, Zhiwu Li, Yuquan Chen, Yixin Sun, Aimin Hu, Jiang Yu, Yang Qiao, Junxian Gu, Hongying Li, Xuxi Peng, Dunrui Wang, Ying Liu, Zhenglong Liu, Jiebin Xie, Zhen Jiang, Gang Tian
On 12 September 2024, OpenAI released two new large language models (LLMs) — o1-preview and o1-mini — marking an important shift in the competitive landscape of commercial LLMs, particularly concerning their reasoning capabilities. Since the introduction of GPT-3.5, OpenAI has launched 31 LLMs in two years. Researchers are rapidly applying these evolving commercial models in clinical medicine, achieving
-
Efficient generation of protein pockets with PocketGen Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-15 Zaixi Zhang, Wan Xiang Shen, Qi Liu, Marinka Zitnik
-
Fast and generalizable micromagnetic simulation with deep neural nets Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-14 Yunqi Cai, Jiangnan Li, Dong Wang
-
Guidelines for ethical use and acknowledgement of large language models in academic writing Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-13 Sebastian Porsdam Mann, Anuraag A. Vazirani, Mateo Aboy, Brian D. Earp, Timo Minssen, I. Glenn Cohen, Julian Savulescu
In this Comment, we propose a cumulative set of three essential criteria for the ethical use of LLMs in academic writing, and present a statement that researchers can quote when submitting LLM-assisted manuscripts in order to testify to their adherence to them.
-
Foundation models in healthcare require rethinking reliability Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-11 Thomas Grote, Timo Freiesleben, Philipp Berens
A new class of AI models, called foundation models, has entered healthcare. Foundation models violate several basic principles of the standard machine learning paradigm for assessing reliability, making it necessary to rethink what guarantees are required to establish warranted trust in them.
-
Reusability report: exploring the utility of variational graph encoders for predicting molecular toxicity in drug design Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-08 Ruijiang Li, Jiang Lu, Ziyi Liu, Duoyun Yi, Mengxuan Wan, Yixin Zhang, Peng Zan, Song He, Xiaochen Bo
-
General-purpose foundation models for increased autonomy in robot-assisted surgery Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-11-01 Samuel Schmidgall, Ji Woong Kim, Alan Kuntz, Ahmed Ezzat Ghazi, Axel Krieger
-
Results from the autoPET challenge on fully automated lesion segmentation in oncologic PET/CT imaging Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-30 Sergios Gatidis, Marcel Früh, Matthias P. Fabritius, Sijing Gu, Konstantin Nikolaou, Christian La Fougère, Jin Ye, Junjun He, Yige Peng, Lei Bi, Jun Ma, Bo Wang, Jia Zhang, Yukun Huang, Lars Heiliger, Zdravko Marinov, Rainer Stiefelhagen, Jan Egger, Jens Kleesiek, Ludovic Sibille, Lei Xiang, Simone Bendazzoli, Mehdi Astaraki, Michael Ingrisch, Clemens C. Cyran, Thomas Küstner
-
Deep learning prediction of ribosome profiling with Translatomer reveals translational regulation and interprets disease variants Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-23 Jialin He, Lei Xiong, Shaohui Shi, Chengyu Li, Kexuan Chen, Qianchen Fang, Jiuhong Nan, Ke Ding, Yuanhui Mao, Carles A. Boix, Xinyang Hu, Manolis Kellis, Jingyun Li, Xushen Xiong
-
Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-22 Yumeng Zhang, Zhikang Wang, Yunzhe Jiang, Dene R. Littler, Mark Gerstein, Anthony W. Purcell, Jamie Rossjohn, Hong-Yu Ou, Jiangning Song
-
Pick your AI poison Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-21
Distinguishing between real and fabricated facts has long been a societal challenge. As the Internet becomes increasingly littered with AI-generated content, the need for curation and safeguarding of high-quality data and information is more crucial than ever.
-
Leveraging language model for advanced multiproperty molecular optimization via prompt engineering Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-21 Zhenxing Wu, Odin Zhang, Xiaorui Wang, Li Fu, Huifeng Zhao, Jike Wang, Hongyan Du, Dejun Jiang, Yafeng Deng, Dongsheng Cao, Chang-Yu Hsieh, Tingjun Hou
-
Blending neural operators and relaxation methods in PDE numerical solvers Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-17 Enrui Zhang, Adar Kahana, Alena Kopaničáková, Eli Turkel, Rishikesh Ranade, Jay Pathak, George Em Karniadakis
-
Estimation of causal effects of genes on complex traits using a Bayesian-network-based framework applied to GWAS data Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-17 Liangying Yin, Yaning Feng, Yujia Shi, Alexandria Lau, Jinghong Qiu, Pak-Chung Sham, Hon-Cheong So
-
A multi-modal deep language model for contaminant removal from metagenome-assembled genomes Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-07 Bohao Zou, Jingjing Wang, Yi Ding, Zhenmiao Zhang, Yufen Huang, Xiaodong Fang, Ka Chun Cheung, Simon See, Lu Zhang
-
A call for an industry-led initiative to critically assess machine learning for real-world drug discovery Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-04 Cas Wognum, Jeremy R. Ash, Matteo Aldeghi, Raquel Rodríguez-Pérez, Cheng Fang, Alan C. Cheng, Daniel J. Price, Djork-Arné Clevert, Ola Engkvist, W. Patrick Walters
Machine learning (ML) is driving exciting innovations in drug discovery, but we need to be mindful of the circumstances that set this application apart. Unlike other fields with fit-for-purpose datasets consisting of millions of examples, published datasets in drug discovery are classically heterogeneous, imbalanced, noisy and expensive to generate1. Furthermore, the applications of ML in drug discovery
-
Engineering flexible machine learning systems by traversing functionally invariant paths Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-03 Guruprasad Raghavan, Bahey Tharwat, Surya Narayanan Hari, Dhruvil Satani, Rex Liu, Matt Thomson
-
Soft robotic shorts improve outdoor walking efficiency in older adults Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-10-01 Enrica Tricomi, Francesco Missiroli, Michele Xiloyannis, Nicola Lotti, Xiaohui Zhang, Marios Stefanakis, Maximilian Theisen, Jürgen Bauer, Clemens Becker, Lorenzo Masia
-
Reusability report: Annotating metabolite mass spectra with domain-inspired chemical formula transformers Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-27 Janne Heirman, Wout Bittremieux
-
Sliding-attention transformer neural architecture for predicting T cell receptor–antigen–human leucocyte antigen binding Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-27 Ziyan Feng, Jingyang Chen, Youlong Hai, Xuelian Pang, Kun Zheng, Chenglong Xie, Xiujuan Zhang, Shengqing Li, Chengjuan Zhang, Kangdong Liu, Lili Zhu, Xiaoyong Hu, Shiliang Li, Jie Zhang, Kai Zhang, Honglin Li
-
Machine learning for data-centric epidemic forecasting Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-27 Alexander Rodríguez, Harshavardhan Kamarthi, Pulak Agarwal, Javen Ho, Mira Patel, Suchet Sapre, B. Aditya Prakash
-
Development of AI-assisted microscopy frameworks through realistic simulation with pySTED Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-26 Anthony Bilodeau, Albert Michaud-Gagnon, Julia Chabbert, Benoit Turcotte, Jörn Heine, Audrey Durand, Flavie Lavoie-Cardinal
-
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-25 Nick McGreivy, Ammar Hakim
-
A multiscale approach for biomedical machine learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20
New multi-modal AI methods fuse different biological data types that span multiple scales, offering promising clinical utility.
-
Zero-shot transfer of protein sequence likelihood models to thermostability prediction Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20 Shawn Reeves, Subha Kalyaanamoorthy
-
Poisoning medical knowledge using large language models Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20 Junwei Yang, Hanwen Xu, Srbuhi Mirzoyan, Tong Chen, Zixuan Liu, Zequn Liu, Wei Ju, Luchen Liu, Zhiping Xiao, Ming Zhang, Sheng Wang
-
Wing-strain-based flight control of flapping-wing drones through reinforcement learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-20 Taewi Kim, Insic Hong, Sunghoon Im, Seungeun Rho, Minho Kim, Yeonwook Roh, Changhwan Kim, Jieun Park, Daseul Lim, Doohoe Lee, Seunggon Lee, Jingoo Lee, Inryeol Back, Junggwang Cho, Myung Rae Hong, Sanghun Kang, Joonho Lee, Sungchul Seo, Uikyum Kim, Young-Man Choi, Je-sung Koh, Seungyong Han, Daeshik Kang
-
An end-to-end recurrent compressed sensing method to denoise, detect and demix calcium imaging data Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-19 Kangning Zhang, Sean Tang, Vivian Zhu, Majd Barchini, Weijian Yang
-
Sparse learned kernels for interpretable and efficient medical time series processing Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-18 Sully F. Chen, Zhicheng Guo, Cheng Ding, Xiao Hu, Cynthia Rudin
-
Pre-training with fractional denoising to enhance molecular property prediction Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-18 Yuyan Ni, Shikun Feng, Xin Hong, Yuancheng Sun, Wei-Ying Ma, Zhi-Ming Ma, Qiwei Ye, Yanyan Lan
-
Realizing full-body control of humanoid robots Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-11 Guangliang Li, Randy Gomez
-
Accelerating histopathology workflows with generative AI-based virtually multiplexed tumour profiling Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-09 Pushpak Pati, Sofia Karkampouna, Francesco Bonollo, Eva Compérat, Martina Radić, Martin Spahn, Adriano Martinelli, Martin Wartenberg, Marianna Kruithof-de Julio, Marianna Rapsomaniki
-
Efficient and scalable reinforcement learning for large-scale network control Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-09-03 Chengdong Ma, Aming Li, Yali Du, Hao Dong, Yaodong Yang
-
What is in your LLM-based framework? Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-30
To maintain high standards in clarity and reproducibility, authors need to clearly mention and describe the use of GPT-4 and other large language models in their work.
-
A step forward in tracing and documenting dataset provenance Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-30 Nicholas Vincent
Training data are crucial for advancements in artificial intelligence, but many questions remain regarding the provenance of training datasets, license enforcement and creator consent. Mahari et al. provide a set of tools for tracing, documenting and sharing AI training data and highlight the importance for developers to engage with metadata of datasets.
-
A large-scale audit of dataset licensing and attribution in AI Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-30 Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, Xinyi (Alexis) Wu, Enrico Shippole, Kurt Bollacker, Tongshuang Wu, Luis Villa, Sandy Pentland, Sara Hooker
-
Learning integral operators via neural integral equations Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-29 Emanuele Zappala, Antonio Henrique de Oliveira Fonseca, Josue Ortega Caro, Andrew Henry Moberly, Michael James Higley, Jessica Cardin, David van Dijk
-
A deep learning method that identifies cellular heterogeneity using nanoscale nuclear features Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-27 Davide Carnevali, Limei Zhong, Esther González-Almela, Carlotta Viana, Mikhail Rotkevich, Aiping Wang, Daniel Franco-Barranco, Aitor Gonzalez-Marfil, Maria Victoria Neguembor, Alvaro Castells-Garcia, Ignacio Arganda-Carreras, Maria Pia Cosma
-
Learning motif-based graphs for drug–drug interaction prediction via local–global self-attention Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-27 Yi Zhong, Gaozheng Li, Ji Yang, Houbing Zheng, Yongqiang Yu, Jiheng Zhang, Heng Luo, Biao Wang, Zuquan Weng
-
Factuality challenges in the era of large language models and opportunities for fact-checking Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-22 Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha, Tanmoy Chakraborty, Giovanni Luca Ciampaglia, David Corney, Renee DiResta, Emilio Ferrara, Scott Hale, Alon Halevy, Eduard Hovy, Heng Ji, Filippo Menczer, Ruben Miguez, Preslav Nakov, Dietram Scheufele, Shivam Sharma, Giovanni Zagni
The emergence of tools based on large language models (LLMs), such as OpenAI’s ChatGPT and Google’s Gemini, has garnered immense public attention owing to their advanced natural language generation capabilities. These remarkably natural-sounding tools have the potential to be highly useful for various tasks. However, they also tend to produce false, erroneous or misleading content—commonly referred
-
A bioactivity foundation model using pairwise meta-learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-14 Bin Feng, Zequn Liu, Nanlan Huang, Zhiping Xiao, Haomiao Zhang, Srbuhi Mirzoyan, Hanwen Xu, Jiaran Hao, Yinghui Xu, Ming Zhang, Sheng Wang
-
On responsible machine learning datasets emphasizing fairness, privacy and regulatory norms with examples in biometrics and healthcare Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-12 Surbhi Mittal, Kartik Thakral, Richa Singh, Mayank Vatsa, Tamar Glaser, Cristian Canton Ferrer, Tal Hassner
-
Data-driven discovery of movement-linked heterogeneity in neurodegenerative diseases Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-09 Mark Endo, Favour Nerrise, Qingyu Zhao, Edith V. Sullivan, Li Fei-Fei, Victor W. Henderson, Kilian M. Pohl, Kathleen L. Poston, Ehsan Adeli
-
Cognitive maps from predictive vision Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-08 Margaret C. von Ebers, Xue-Xin Wei
-
Integrated structure prediction of protein–protein docking with experimental restraints using ColabDock Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-08-05 Shihao Feng, Zhenyu Chen, Chengwei Zhang, Yuhao Xie, Sergey Ovchinnikov, Yi Qin Gao, Sirui Liu
-
Deep learning prediction of glycopeptide tandem mass spectra powers glycoproteomics Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-30 Yu Zong, Yuxin Wang, Xipeng Qiu, Xuanjing Huang, Liang Qiao
-
Advanced AI assistants that act on our behalf may not be ethically or legally feasible Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-29 Silvia Milano, Sven Nyholm
Google and OpenAI have recently announced major product launches involving artificial intelligence (AI) agents based on large language models (LLMs) and other generative models. Notably, these are envisioned to function as personalized ‘advanced assistants’. With other companies following suit, such AI agents seem poised to be the next big thing in consumer technology, with the potential to disrupt
-
A question of trust for AI research in medicine Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-24
Medical research is one of the most impactful areas for machine learning applications, but access to large and diverse health datasets is needed for models to be useful. Winning trust from patients by demonstrating that data are handled securely and effectively is key.
-
DNA language model GROVER learns sequence context in the human genome Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-23 Melissa Sanabria, Jonas Hirsch, Pierre M. Joubert, Anna R. Poetsch
-
Partial-convolution-implemented generative adversarial network for global oceanic data assimilation Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-22 Yoo-Geun Ham, Yong-Sik Joo, Jeong-Hwan Kim, Jeong-Gil Lee
-
Automated construction of cognitive maps with visual predictive coding Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-18 James Gornet, Matt Thomson
-
A transformer-based weakly supervised computational pathology method for clinical-grade diagnosis and molecular marker discovery of gliomas Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-18 Rui Jiang, Xiaoxu Yin, Pengshuai Yang, Lingchao Cheng, Juan Hu, Jiao Yang, Ying Wang, Xiaodan Fu, Li Shang, Liling Li, Wei Lin, Huan Zhou, Fufeng Chen, Xuegong Zhang, Zhongliang Hu, Hairong Lv
-
The need for reproducible research in soft robotics Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-17 Robert Baines, Dylan Shah, Jeremy Marvel, Jennifer Case, Andrew Spielberg
Recent years have witnessed the rise of commercialization efforts for soft robotics technology, which includes soft grippers, stretchable sensors and platforms for human–robot interactions. However, this commercialization lags behind the trends seen with other robotics technologies at equivalent points in their respective lifecycles. For example, the first patent for an industrial robotic manipulator
-
Realistic morphology-preserving generative modelling of the brain Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-15 Petru-Daniel Tudosiu, Walter H. L. Pinaya, Pedro Ferreira Da Costa, Jessica Dafflon, Ashay Patel, Pedro Borges, Virginia Fernandez, Mark S. Graham, Robert J. Gray, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso
-
High-resolution real-space reconstruction of cryo-EM structures using a neural field network Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-12 Yue Huang, Chengguang Zhu, Xiaokang Yang, Manhua Liu
-
Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-12 Yang Long, Haoran Xue, Baile Zhang
-
Shielding sensitive medical imaging data Nat. Mach. Intell. (IF 18.8) Pub Date : 2024-07-11 Gaoyang Liu, Chen Wang, Tian Xia