当前位置: X-MOL 学术Nat. Mach. Intell. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Clinical large language models with misplaced focus
Nature Machine Intelligence ( IF 18.8 ) Pub Date : 2024-11-18 , DOI: 10.1038/s42256-024-00929-0
Zining Luo, Haowei Ma, Zhiwu Li, Yuquan Chen, Yixin Sun, Aimin Hu, Jiang Yu, Yang Qiao, Junxian Gu, Hongying Li, Xuxi Peng, Dunrui Wang, Ying Liu, Zhenglong Liu, Jiebin Xie, Zhen Jiang, Gang Tian

On 12 September 2024, OpenAI released two new large language models (LLMs) — o1-preview and o1-mini — marking an important shift in the competitive landscape of commercial LLMs, particularly concerning their reasoning capabilities. Since the introduction of GPT-3.5, OpenAI has launched 31 LLMs in two years. Researchers are rapidly applying these evolving commercial models in clinical medicine, achieving results that sometimes exceed human performance in specific tasks. Although such success is encouraging, the development of the models used for these tasks may not align with the characteristics and needs of clinical practice.

LLMs can be categorized as either open-source or closed-source. Open-source models, such as Meta’s Llama, allow developers to access source code, training data and documentation freely. By contrast, closed-source models are accessed only through official channels or application programming interfaces (APIs). Initially, open-source models dominated the LLM landscape, until the release of OpenAI’s GPT-3 in 20201, which attracted considerable commercial interest and shifted focus towards closed-source approaches2.



中文翻译:


焦点错位的临床大型语言模型



2024 年 9 月 12 日,OpenAI 发布了两个新的大型语言模型(LLMs)——o1-preview 和 o1-mini——标志着商业LLMs,尤其是在它们的推理能力方面。自 GPT-3.5 推出以来,OpenAI 在两年内推出了 31 LLMs。研究人员正在迅速将这些不断发展的商业模式应用于临床医学,取得的结果有时超过人类在特定任务中的表现。尽管这样的成功令人鼓舞,但用于这些任务的模型的开发可能与临床实践的特点和需求不一致。


LLMs 可以分为开源和闭源。开源模型(例如 Meta 的 Llama)允许开发人员自由访问源代码、训练数据和文档。相比之下,闭源模型只能通过官方渠道或应用程序编程接口 (API) 访问。最初,开源模型主导着 LLM 领域,直到 2020 年 OpenAI 的 GPT-3 发布1,这引起了相当大的商业兴趣,并将重点转向闭源方法2

更新日期:2024-11-18
down
wechat
bug