当前位置 : X-MOL首页行业资讯 › 有荧光的饮料,能救命的神药——奎宁的百年传奇

有荧光的饮料,能救命的神药——奎宁的百年传奇

不知大家有没有尝过一种名为“汤力水(tonic water)”的饮料?据说会有一点点天然植物性的苦味,口感独特,有人称它为“暗黑汽水”。但更有意思的并不在于它的口味,而是——这款饮料在阳光照射后会微微发光,如果将其置于紫外线照射下,发光现象则更明显(下图)。现在我们已经知道,这种微弱的荧光现象归因于汤力水的主要成分——奎宁(quinine)。

发蓝光的汤力水。图片来源于网络


一百多年前,奎宁溶液发光的现象也引起了博物学家John Herschel爵士的关注,他记录道:“将奎宁溶液放置于光线和眼睛之间,或白色背景下,虽然透明无色,但在某些条件或光线入射角度下,溶液会呈现非常鲜明而美丽的天蓝色。”此后若干年,物理学家George Stokes将这种发光称为荧光。对荧光现象的观察和研究在后续的一个半世纪里如火如荼地进行,并对多个学科产生了巨大的影响和推动作用。而荧光饮料的主要成分奎宁,也是天然产物研究历史中的“明星”。近日,南非开普敦大学John WoodlandKelly ChibaleNature Chemistry 上撰文,讲述了奎宁的有趣历史。


奎宁,又名金鸡纳碱,提取自南美植物金鸡纳霜的树皮,是一种天然生物碱,因其独特抗疟疾疗效闻名于世。奎宁的名字来源于南美原住民对金鸡纳霜树皮的称谓“quina-quina”,大致可翻译为“树皮中的树皮(bark of barks)”或“药物中的药物(medicine of medicines)”,他们用这种树皮缓解颤抖、发烧和疼痛症状。这种树皮医学用途被来自欧洲的医生和耶稣会传教士获得,不久后他们发现这种药物能够有效缓解疟疾症状。于是,伴随着十九世纪早期的殖民扩张,欧洲人对这种生长于安第斯山脉的“发热树”需求与日俱增,过度开发终于导致资源的稀缺和枯竭。随后,这种原产于南美的植物被引种到了印度、印尼等世界其它地区。

原产于南美洲的金鸡纳霜。图片来源于网络


对于早期的欧洲殖民者来说,奎宁可是救命药。它帮助他们抵御住了热带及亚热带殖民地疟疾的侵袭,使得他们得以在当地站稳脚跟。然而,用精细研磨的奎宁粉做成的药丸非常苦,难以下咽。于是,欧洲人将它与酒精饮料混合,尤其是当时在印度的英国殖民者,将奎宁粉与苏打水、糖混合,并添加了英国人喜欢的杜松子酒(gin,也称“金酒”),这就是当代依然流行的金汤力鸡尾酒(gin and tonic)的起源。当然,顺便提醒一句,大家最好别指望通过喝含奎宁的饮料来治疗疟疾。简单的计算显示,要达到奎宁治疗剂量,一个人需要喝下10升左右市售的汤利水!

英国著名的孟买蓝宝石金酒(金汤力鸡尾酒)。图片来源于网络


从十九世纪中期到二十世纪四十年代,奎宁一直是治疗疟疾的标准药物,在人类抗击传染病的斗争中曾发挥过无与伦比的作用,挽救了无数人的生命,直至被化学合成药物——氯喹所取代。后者副作用更少,安全性更高,且更利于大规模生产。


奎宁的化学结构独特而复杂。自1820年被两位法国药物学家从金鸡纳霜树皮中提取纯化出来后,整整一个世纪过去,化学家们都无法完成它的人工全合成。有趣的是,1856年,当时年仅18岁的William Henry Perkin曾尝试迎接这一挑战,他计划通过氧化N-烯丙基甲苯胺得到奎宁,结果失败了,却“无心插柳”地合成了苯胺紫(mauveine)。要知道,苯胺紫成为第一个化学合成的色素染料,被大规模用于工业生产,并彻底改变了印染业。

从奎尼辛到奎宁的转化。图片来源:Angew. Chem. Int. Ed.


突破性的进展出现在1918年,德国化学家Paul Rabe和 Karl Kindler以奎尼辛(d-quinotoxine)为原料通过3步化学反应合成了奎宁(Angew. Chem. Int. Ed.200847, 1736-1740)。随后是1944年,大佬R. B. Woodward和William Doering从7-羟基喹啉出发,经多步反应得到奎尼辛(J. Am. Chem. Soc.194567, 860–874)。由于Rabe和Kindler之前已经完成了奎尼辛到奎宁的转化,Woodward和Doering的工作也就补全了奎宁的全合成路线。八卦一下,由于Woodward和Doering的论文里只做到奎尼辛,是否算是奎宁的全合成业内也有不同的声音(Angew. Chem. Int. Ed., 200544, 854-885; Angew. Chem. Int. Ed., 200746, 1378-1413)。直到2001年,奎宁的立体选择性全合成才真正意义上实现,完成者是另外一位伟大的化学家Gilbert Stork(J. Am. Chem. Soc., 2001123, 3239–3242)。小小的奎宁分子,它的全合成历史,也从一个角度反映出有机合成化学的发展历史。

为奎宁全合成做出卓越贡献的化学家:Woodward和Doering(1944年)以及Stork(1996年)。图片来源:Angew. Chem. Int. Ed.


然而,实验室完成的全合成路线比较复杂,时至今日,商业上生产奎宁主要还要依靠金鸡纳霜树皮。奎宁既有治疗也有预防疟疾的效用,但目前还不清楚它是如何精确杀伤恶性疟原虫的。有许多证据表明,它会干扰疟原虫的血红蛋白降解通路。此外,最近的一项研究通过细胞热位移和质谱联用分析法,鉴定出一个奎宁作用的蛋白靶标——恶性疟原虫嘌呤核苷磷酸化酶(PfPNP)。


虽然奎宁已经不再是治疗疟疾的首选药物,但这并非意味着它要退出历史舞台。现在,奎宁在临床上被用于治疗巴贝斯虫病(babesiosis);它的蓝光被作为一种荧光标准;它还被用作不对称有机催化反应的一种配体,而大家都知道有机催化刚刚获得了去年的诺贝尔化学奖;它依然是汤力水的关键成分,还常常搭配杜松子酒或秘鲁国酒皮斯科,在世界范围内广受欢迎。

汤力水和金鸡纳霜。图片来源:Nat. Chem.


原文(扫描或长按二维码,识别后直达原文页面,或点此查看原文):

Quinine fever

John G. Woodland, Kelly Chibale 

Nat. Chem.202214, 112, DOI: 10.1038/s41557-021-00872-2


(本文由天生西南供稿)


如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOLx-mol.com ), 未经许可,谢绝转载!

相关文章
阿拉丁
老年学Q1区期刊征稿进行中
FEMS Journals历年主题
分享您的投稿习惯
经济学SSCI期刊
英语语言编辑翻译加编辑新
加速出版服务新
1212购书送好礼
Springer旗下全新催化方向高质新刊
动物学生物学
系统生物学合成生物学
专注于基础生命科学与临床研究的交叉领域
传播分子、细胞和发育生物学领域的重大发现
聚焦分子细胞和生物体生物学
图书出版流程
快速找到合适的投稿机会
热点论文一站获取
定位全球科研英才
中国图象图形学学会合作刊
哈尔滨
福州
德国
浙江大学
浙江大学
新加坡
南开
中国科技大学
浙江大学
深圳湾
ACS材料视界
down
wechat
bug