36650
当前位置: 首页   >  成果及论文
成果及论文

      一、成果奖励

[1] 郑近德, 潘海洋. 机械故障的多尺度非线性特征信息提取与诊断方法,安徽省科学技术奖(自然科学)二等奖, 安徽省人民政府, 2020.

[2] 郑近德, 潘海, 程军圣, 杨宇, 刘庆运. 机械故障诊断的无参自适应模态分解理论与方法, 中国振动工程学会科学技术奖(基础研究)二等奖, 中国振动工程学会2021.

[3] 郑近德.大型冶金起重装备智能健康监测成套技术与应用,安徽省科学技术奖(科技进步)二等奖,安徽省人民政府,2022.6/8

[4] 海洋.高刚度万能轧机及快速换辊装备的开发与应用,安徽省科学技术奖(科技进步)三等奖,安徽省人民政府,2022.(4/6)

[5] 郑近德,~,潘海洋,~. 产教互融、四轮驱动——面向冶金行业的机械类研究生协同育人机制探索与实践,安徽省研究生教学成果奖三等奖,安徽省教育厅,2022.1、6/14

[6] 郑近德.高刚度万能轧机及高端轧制工艺技术的开发与应用. 中国质量协会质量技术奖二等奖,中国质量协会,2023.(5/10)

[7] 郑近德,潘海洋.多维融合·级链贯通——聚焦区域发展需求的机械学科人才培养体系创新与实践.安徽省教学成果奖一等奖. 安徽省教育厅. 2024.(2、6/13)

[8] 郑近德,童靳于,潘海洋. 需求牵引、项目驱动的创新与实践并举的机械类研究生培养机制构建.安徽省研究生教学成果奖二等奖. 安徽省教育厅. 2024.(2、6、7/10)

[9] 郑近德, 潘海洋, 童靳于, 程健. 区域联动·多维协同·级链进升——机械专业人才培养体系创新与实践. 中国机械行业产教融合教育教学创新大赛(区域赛)一等奖. 中国机械工程学会. 2024.(1、2、6、10/10)

[10] 郑近德, 潘海洋,童靳于, 程健. 区域联动·多维协同·级链进升——机械专业人才培养体系创新与实践. 中国机械行业产教融合教育教学创新大赛二等奖. 中国机械工程学会. 2024.(1、2、6、10/10)

    二、学术专著  

[1] 杨宇,潘海洋,程军圣. 机械故障诊断的变量预测模式识别方法,湖南大学出版社.2017.

[2] 程军圣,郑近德,杨宇.局部特征尺度分解方法及其应用,湖南大学出版社.2020.

[3] 郑近德,潘海洋,童靳于.机械故障诊断的复杂性理论与方法,机械工业出版社,2023.

    三、科研论文(SCI中科院大类2区及以上\中文高质量科技期刊T2及以上,*为通讯作者):

2025

[1] Jian Cheng, Haiyang Pan*, Jinde Zheng*, et al. Global optimal Ramanujan spectrum: A feature extraction method without pseudo-monotonicity. Expert Systems with Applications, 2025, 192: 125425.

[2] Haiyang Pan, Zhangping Wu, Jian Cheng*, Jinde Zheng, Jinyu Tong. Characteristic Energy Ratio Ramanujan-gram Method: A novel optimal multi-bands demodulation method. IEEE Transactions on Instrumentation and Measurement. 2025,74:1-9.

[3] Jian Cheng, Zhiheng Liu, Haiyang Pan*, et al. Sensitive periodic mode decomposition: An effective method for extracting periodic pulse features. Nonlinear Dynamics.2025.

[4]  Jian Cheng, Haiyang Pan*, Jinde Zheng, et al. ERS: An adaptive spectral analysis method based on Ramanujan theory for strong noise signal. IEEE Transactions on Reliability. 2025.

[5]  Jinde Zheng, Guoliang Peng, Haiyang Pan, et al. SAFO: Serial Amplitude Modulation-Frequency Modulation Operator for Multi-Channel Multi-Component Signal Decomposition and Its Application to Rolling Bearing Fault Diagnosis. IEEE Sensors Journal.2025.

2024

[1] Xuelin Yin, Haiyang Pan*, Jian Cheng, et al. Enhanced Symplectic Ramanujan Mode Pursuit and Its Application in Mechanical Composite Fault Diagnosis. Mechanism and Machine Theory, 2024, 191: 105525.

[2] Haiyang Pan, Haifeng Xu, Jinde Zheng, et al. A Semi-supervised Matrixized Graph Embedding Machine for Roller Bearing Fault Diagnosis Under Few-labeled Samples. IEEE Transactions on Industrial Informatics, 2024,20(1):854-863.

[3] Jian Cheng, Haiyang Pan*, Jinde Zheng. A novel feature extraction method: Iterative Ramanujan Fourier Mixture Spectrum. Structural Health Monitoring. 2024,23(6):3299-3311.

[4] Haifeng Xu, Haiyang Pan*, Jinde Zheng, et al. Intelligent fault identification in sample imbalance scenarios using robustness low-rank matrix classifier with fuzzy weighting factor. Applied Soft Computing, 2024, 152: 111229.

[5]Haoran Liu, Haiyang Pan*, Jinde Zheng, et al. A new Robust Projection Distributed Broad Learning Under Redundant Samples and Noisy Environment. IEEE Transactions on Instrumentation and Measurement,2024,73:3532209.

[6] Jian Cheng, Haiyang Pan*, Jinyu Tong, et al.Reduced mode decomposition: a new signal decomposition method. IEEE Transactions on Instrumentation and Measurement.2024,73:6503109. 

[7] Jinde Zheng, Shijun Cao, Ke Feng, et al. Zero-Phase Filter-Based Adaptive Fourier Decomposition and Its Application to Fault Diagnosis of Rolling Bearing. IEEE Transactions on Instrumentation and Measurement, 2024,73:3512111.

[8] Haiyang Pan, Hong Feng, Jian Cheng, et al. Ramanujan-gram: An autonomous weak period fault extraction method under strong noise. Structural Health Monitoring. 2024,23(4):2068-2082.

[9] Jian Cheng, Haiyang Pan*, Jinde Zheng. Maximum Ramanujan spectrum signal-to-noise ratio deconvolution method: Algorithm and applications. IEEE Transactions on Industrial Informatics. 2024,20(10):11977-11986.

[10]Haiyang Pan, Bingxin Li, Jinde Zheng*, et al. Research on Roller Bearing Fault Diagnosis Based on Robust Smooth Constrained Matrix Machine under Imbalanced Data. Advanced Engineering Informatics. 2024, 62: 102667.

[11]Jinlong Bao, Jinde Zheng*, Jian Cheng, et al. MHTFPE2D: two-dimensional multi-scale hierarchical time–frequency permutation entropy for complexity measurement, Nonlinear Dynamics, 2024,112: 15087-15108.

[12] Junfeng Wang, Jinde Zheng*, Haiyang Pan, et al. Refined Composite Multiscale Slope Entropy and Its Application in Rolling Bearing Fault Diagnosis. ISA Transactions, 2024,152:371-386

[13]Jinde Zheng, Junfeng Wang, Haiyang Pan, et al. Refined time-shift multiscale slope entropy: a new nonlinear dynamic analysis tool for rotating machinery fault feature extraction, Nonlinear Dynamics, 2024, 112:19887-19915.

[14]Wenqing Ding, Jinde Zheng*, Haiyang Pan, et al. LMSST-based two-dimensional multi-scale time-frequency reverse dispersion entropy and its application in fault diagnosis of rolling bearing. IEEE Sensors Journal,2024,24(17):27937-27948.

[15]Haoran Liu, Haiyang Pan*, Jinde Zheng, et al.  Broad Distributed Game Learning for classification in rolling bearing fault diagnosis. Applied Soft Computing. 2024,167:112470.(Code  DOI:10.13140/RG.2.2.14611.28968

[16] 潘海洋,徐海锋,郑近德,等. 基于双加权不平衡矩阵分类器的机械故障诊断方法.机械工程学报. 2024,60(3):170-180.

[17] 潘海洋,章颖,程健,等.自适应精简经验Ramanujan分解及其在复合故障诊断中的应用.电子学报.2024,52(6):1989-1999.

2023

[1] Jinyu Tong, Shiyu Tang, Yi Wu, et al. A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks. Measurement,2023, 206:112282.

[2] Jinde Zheng, Wanming Ying, Haiyang Pan, et al. Holo-hilbert square spectral analysis: A new fault diagnosis tool for rotating machinery health management. Mechanical Systems and Signal Processing, 2023, 189: 110069.

[3] Haiyang Pan, Haifeng Xu, Jinde Zheng, et al. Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis. Information Sciences, 2023, 624:395-419.(Code: DOI10.13140/RG.2.2.19292.46724

[4]Jinde Zheng, Yan Chen, Haiyang Pan, Jinyu Tong. Composite multi-scale phase reverse permutation entropy and its application to fault diagnosis of rolling bearing. Nonlinear Dynamics, 2023,111:459-479.

[5]Jinyu Tong, Cang Liu, Jiahan Bao, et al. A novel ensemble learning based multi-sensor information fusion method for rolling bearing fault diagnosis. IEEE Transactions on Instrumentation and Measurement,2023,72:9501712.

[6]Haiyang Pan, Li Sheng, Haifeng Xu, Jinde Zheng, Jinyu Tong, Limin Niu. Deep stacked pinball transfer matrix machine with its application in roller bearing fault diagnosis. Engineering Applications of Artificial Intelligence, 2023,121:105991.

[7]Haiyang Pan, Ying Zhang, Jian Cheng*, Jinde Zheng, Jinyu Tong. Adaptive multi-layer empirical Ramanujan decomposition and its application in roller bearing fault diagnosis. Measurement, 2023, 213: 112707.

[8] Haiyang Pan, Xuelin Yin, Jian Cheng*, et al. Periodic Component Pursuit-based Kurtosis Deconvolutionand its application in roller bearing compound fault diagnosis. Mechanism and Machine Theory,2023,185:105337.

[9] Jinde Zheng, Wanming Ying, Jinyu Tong, et al. Multiscale three-dimensional Holo–Hilbert spectral entropy: a novel complexity-based early fault feature representation method for rotating machinery.Nonlinear Dynamics.2023,111:10309-10330.

[10] Jiaqi Li, Jinde Zheng*, Haiyang Pan, et al. Use of two-dimensional refined composite multi-scale time-frequency dispersion entropy for rolling bearing condition monitoring. Measurement, 2023,214: 112808.

[11] Haiyang Pan, Ying Zhang, Jian Cheng, et al. Symplectic geometry transformation based periodic segment method: Algorithm and applications. IEEE Transactions on Instrumentation and Measurement, 2023,72:6502708.

[12]   Jinyu Tong, Cang Liu, Jinde Zheng, et al. Multi-sensor information fusion and coordinate attention-based fault diagnosis method and its interpretability research. Engineering Applications of Artificial Intelligence, 2023,124: 106614.

[13]  Shijun Cao, Jinde Zheng*, Guoliang Peng, et al. Multivariate enhanced adaptive empirical Fourier decomposition and its application in rolling bearing fault diagnosis. IEEE Sensors Journal,2023,23(20):24930-24943.

[14] Jiaqi Li, Jinde Zheng*, Haiyang Pan, et al. Two-dimensional composite multi-scale time–frequency reverse dispersion entropy-based fault diagnosis for rolling bearing. Nonlinear Dynamics, 2023,111: 7525-7546.

[15] 郑近德,应万明,潘海洋,.基于改进全息希尔伯特谱分析的旋转机械故障诊断方法.机械工程学报,2023,59(1):162-174.

2022

[1] Haiyang Pan, Haifeng Xu, Jinde Zheng, et al. Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis. Advanced Engineering Informatics, 2022,51:101445.

[2]  Haiyang PanHaifeng Xu, Jinde Zheng. A novel symplectic relevance matrix machine method for intelligent fault diagnosis of roller bearing. Expert Systems with Applications, 2022, 192: 116400.

[3]  Haiyang Pan, Haifeng Xu, Jinde Zheng, et al.  Cyclic symplectic component decomposition with application in planetary gearbox fault diagnosis. Mechanism and Machine Theory, 2022, 172: 104792.

[4] Jinde Zheng, Shijun Cao, HaiyangPan, et al. Spectral envelope-based adaptive empirical Fourier decomposition method and its application to rolling bearing fault diagnosis. ISA Transactions, 2022.126:476-492.

[5]  Xinglong Wang, Jinde Zheng*, Qing Ni, et al. Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions. Mechanical Systems and Signal Processing, 2022, 172: 109017.

[6]  Haifeng Xu, Haiyang Pan*, Jinde Zheng, et al. Dynamic penalty adaptive matrix machine for the intelligent detection of unbalanced faults in roller bearing. Knowledge-Based Systems, 2022, 247:108779.

[7]  Haiyang Pan, Haifeng Xu, Qingyun Liu, Jinde Zheng, Jinyu Tong. An intelligent fault diagnosis method based on adaptive maximal margin tensor machine. Measurement, 2022, 198:111337.

[8] Haiyang Pan, Li Sheng, Haifeng Xu, Jinyu Tong, Jinde Zheng, Qingyun Liu. Pinball Transfer Support Matrix Machine for Roller Bearing fault diagnosis under limited annotation data. Applied Soft Computing, 2022,125:109209.

[9] Haiyang Pan, Haifeng Xu, Jinde Zheng, Jinyu Tong, Jian Cheng. Twin robust matrix machine for intelligent fault identification of outlier samples in roller bearing. Knowledge-Based Systems, 2022, 252:109391.

[10]  徐海锋潘海洋*郑近德.交互偏移支持矩阵机及其在滚动轴承故障诊断中的应用.振动工程学报,2022,35(03):760-770.

2021

[1] Jinde Zheng, Miaoxian Su, Wanming Ying, et al. Improved uniform phase empirical mode decomposition and its application in machinery fault diagnosis. Measurement, 2021,179: 109425.

[2]  Jinde Zheng, Xinglong Wang, Haiyang Pan, et al. The Traverse Symplectic Correlation-Gram (TSCgram): A New and Effective Method of Optimal Demodulation Band Selection for Rolling Bearing. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-15.

[3]  Haiyang Pan, Jinde Zheng. An intelligent fault diagnosis method for roller bearing using symplectic hyperdisk matrix machine. Applied Soft Computing, 2021,105: 107284.

[4]  Haiyang Pan, Jinde Zheng, Yu Yang, et al. Nonlinear sparse mode decomposition and its application in planetary gearbox fault diagnosis . Mechanism and Machine Theory, 2021, 155: 104082.

[5]  Jinde Zheng, Haiyang Pan, Jinyu Tong, et al. Generalized refined composite multiscale fuzzy entropy and multi-cluster feature selection based intelligent fault diagnosis of rolling bearing, ISA Transactions, 2022,123:136-151.

[6] Jinde Zheng, Siqi Huang, Haiyang Pan, et al. Adaptive power spectrum Fourier decomposition method with application in fault diagnosis for rolling bearing. Measurement, 2021, 183:109837.

[7]  Wanming Ying, Jinde Zheng*, Haiyang Pan, et al. Permutation entropy-based improved uniform phase empirical mode decomposition for mechanical fault diagnosis, Digital Signal Processing, 2021, 117:103167.

[8]  Mingen Gu, Jinde Zheng, Haiyang Pan*, Jinyu Tong. Ramp sparse support matrix machine and its application in roller bearing fault diagnosis. Applied Soft Computing, 2021, 113(Part A):107928.(Code: https://doi.org/10.24433/CO.1774599.v1)

[9]  Xinglong Wang, Jinde Zheng*, Haiyang Pan, et al. Maximum envelope-based Autogram and Symplectic geometry mode decomposition based gear fault diagnosis method. Measurement, 2021, 174: 108575.

[10]  郑近德,王兴龙,潘海洋,.基于自适应自相关谱峭度图的滚动轴承故障诊断方法.中国机械工程,2021,32(07):778-785+792.

[11]  郑近德,苏缪涎,潘海洋,童靳于,潘紫微.自适应噪声加权优选经验模态分解及其在机械故障诊断中的应用. 振动工程学报,2021,34(04):869-878.

[12]  童靳于,罗金,郑近德.基于增强深度自编码网络的滚动轴承故障诊断方法.中国机械工程,2021,32(21):2617-2624.

2020

[1]  郑近德,潘海洋,童靳于,.自适应掩膜信号集成局部特征尺度分解及其应用[J].电子学报,2020,48(10):2060-2070.

[2]  郑近德,潘海洋,程军圣,.基于自适应经验傅里叶分解的机械故障诊断方法[J].机械工程学报,2020,56(09):125-136.

[3]  Jinde Zheng, Haiyang Pan. Use of generalized refined composite multiscale fractional dispersion entropy to diagnose the faults of rolling bearing[J]. Nonlinear Dynamics, 2020, 101(2): 1417-1440.

[4]  Jinde Zheng, Haiyang Pan. Mean-optimized mode decomposition: An improved EMD approach for non-stationary signal processing[J]. ISA Transactions, 2020, 106: 392-401

[5] Jinde Zheng, Haiyang Pan, Qingyun Liu, et al. Refined time-shift multiscale normalised dispersion entropy and its application to fault diagnosis of rolling bearing[J]. Physica A: Statistical Mechanics and its Applications, 2020, 545: 123641.

[6] Haiyang Pan, Yu Yang, Jinde Zheng, et al. Symplectic interactive support matrix machine and its application in roller bearing condition monitoring[J]. Neurocomputing, 2020, 398:1-10.

[7] Haiyang Pan, Yu Yang, Ping Wang, et al. Symplectic incremental matrix machine and its application in roller bearing fault diagnosis[J]. Applied Soft Computing.2020,95: 106566.

2019

[1] 李从志,郑近德*,潘海洋,.基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J].中国机械工程,2019,30(14):1713-1719+1726.

[2] Jinde Zheng, Haiyang Pan, Qingyun Liu, et al. Refined time-shift multiscale normalised dispersion entropy and its application to fault diagnosis of rolling bearing[J]. Physica A: Statistical Mechanics and its Applications, 2019, 545: 123641.

[3] Jinde Zheng, Zhilin Dong, Haiyang Pan, et al. Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing[J]. Measurement, 2019, 143: 69-80.

[4] Jinde Zheng, Jinyu Tong, Qing Ni, et al. Partial ensemble approach to resolve the mode mixing of extreme-point weighted mode decomposition[J]. Digital Signal Processing, 2019, 89: 70-81.

[5] Haiyang Pan, Yu Yang, Xin Li, et al. Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 114: 189-211.

[6] Haiyang Pan, Yu Yang, Jinde Zheng, et al. A noise reduction method of Symplectic Singular Mode Decomposition based on Lagrange multiplier. Mechanical Systems & Signal Processing. 2019, 133:106283.

[7] Haiyang Pan, Yu Yang, Jinde Zheng, et al. A fault diagnosis approach for roller bearing based on symplectic geometry matrix machine[J]. Mechanism and Machine Theory. 2019,140:31-43.(https://www.researchgate.net/publication/357900073_MATLAB_for_Support_matrix_machine)

[8] Haiyang Pan, Yu Yang, Jinde Zheng, et al. Symplectic transformation based variational Bayesian learning and its applications to gear fault diagnosis[J]. Measurement. 2019, 147, 106827.

2018

[1] 郑近德,代俊习,朱小龙,.基于改进多尺度模糊熵的滚动轴承故障诊断方法[J].振动.测试与诊断,2018,38(05):929-934+1078.

[2] 郑近德,潘海洋,戚晓利,.基于改进经验小波变换的时频分析方法及其在滚动轴承故障诊断中的应用[J].电子学报,2018,46(02):358-364.

[3] 郑近德,潘海洋,程军圣.均值优化经验模态分解及其在转子故障诊断中的应用[J].机械工程学报,2018,54(23):93-101.

[4] Jinde Zheng, Zhanwei Jiang, Haiyang Pan. Sigmoid-based refined composite multiscale fuzzy entropy and t-SNE based fault diagnosis approach for rolling bearing[J]. Measurement, 2018, 129: 332-342.

[5] Jinde Zheng, Haiyang Pan, Tao Liu, et al. Extreme-point weighted mode decomposition[J]. Signal Processing, 2018, 142: 366-374.

[6] Jinde Zheng, Haiyang Pan, Shubao Yang, et al. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 99: 229-243.

2017

[1] 郑近德,姜战伟,代俊习,.基于VMD的自适应复合多尺度模糊熵及其在滚动轴承故障诊断中的应用[J].航空动力学报,2017,32(07):1683-1689.

[2] 郑近德,潘海洋,杨树宝,.广义变分模态分解方法及其在变工况齿轮故障诊断中的应用[J].振动工程学报,2017,30(03):502-509.

[3] 姜战伟,郑近德,潘海洋,.POVMD与包络阶次谱的变工况滚动轴承故障诊断[J].振动.测试与诊断,2017,37(03):609-616+636.

[4] 代俊习,郑近德,潘海洋,.基于复合多尺度熵与拉普拉斯支持向量机的滚动轴承故障诊断方法[J].中国机械工程,2017,28(11):1339-1346.

[5] 潘海洋,郑近德,杨宇,.基于CELCDMFVPMCD的智能故障诊断方法研究[J].电子学报,2017,45(03):546-551.

[6] 潘海洋,杨宇,郑近德,.基于径向基函数的变量预测模型模式识别方法[J].航空动力学报,2017,32(02):500-506.

[7] Jinde Zheng, Haiyang Pan, Shubao Yang, et al. Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis[J]. Signal Processing, 2017, 130: 305-314.

[8] Jinde Zheng, Haiyang Pan, Junsheng Cheng. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines[J]. Mechanical Systems and Signal Processing, 2017, 85: 746-759.

2016

[1] 郑近德,潘海洋,潘紫微,.自适应无参经验小波变换及其在转子故障诊断中的应用[J].中国机械工程,2016,27(16):2218-2224.

[2] 郑近德,潘海洋,戚晓利,.复合层次模糊熵及其在滚动轴承故障诊断中的应用[J].中国机械工程,2016,27(15):2048-2055.

[3] 郑近德,潘海洋,程军圣.非平稳信号分析的广义解析模态分解方法[J].电子学报,2016,44(06):1458-1464.

[4] 郑近德,潘海洋,张俊,.APEEMD及其在转子碰摩故障诊断中的应用[J].振动.测试与诊断,2016,36(02):257-263+399.

[5] Jinde Zheng. Rolling bearing fault diagnosis based on partially ensemble empirical mode decomposition and variable predictive model-based class discrimination[J]. Archives of Civil and Mechanical Engineering, 2016, 16(4): 784-794.