当前位置:
X-MOL 学术
›
Phytopathology
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Environmental Factors Influencing Stem Rot Development in Peanut: Predictors and Action Thresholds for Disease Management.
Phytopathology ( IF 2.6 ) Pub Date : 2024-02-26 , DOI: 10.1094/phyto-05-23-0164-r Santosh Sanjel 1, 2 , James Colee 3 , Rebecca L Barocco 1, 2 , Nicholas S Dufault 2 , Barry L Tillman 4, 5 , Zamir K Punja 6 , Ramdeo Seepaul 1, 5 , Ian M Small 1, 2
Phytopathology ( IF 2.6 ) Pub Date : 2024-02-26 , DOI: 10.1094/phyto-05-23-0164-r Santosh Sanjel 1, 2 , James Colee 3 , Rebecca L Barocco 1, 2 , Nicholas S Dufault 2 , Barry L Tillman 4, 5 , Zamir K Punja 6 , Ramdeo Seepaul 1, 5 , Ian M Small 1, 2
Affiliation
Peanuts grown in tropical, subtropical, and temperate regions are susceptible to stem rot, which is a soilborne disease caused by Athelia rolfsii. Due to the lack of reliable environmental-based scheduling recommendations, stem rot control relies heavily on fungicides that are applied at predetermined intervals. We conducted inoculated field experiments for six site-years in North Florida to examine the relationship between germination of A. rolfsii sclerotia: the inoculum, stem rot symptom development in the peanut crop, and environmental factors such as soil temperature (ST), soil moisture, relative humidity (RH), precipitation, evapotranspiration, and solar radiation. Window-pane analysis with hourly and daily environmental data for 5- to 28-day periods before each disease assessment were evaluated to select model predictors using correlation analysis, regularized regression, and exhaustive feature selection. Our results indicated that within-canopy ST (at 0.05 m belowground) and RH (at 0.15 m aboveground) were the most important environmental variables that influenced the progress of mycelial activity in susceptible peanut crops. Decision tree analysis resulted in an easy-to-interpret one-variable model (adjusted R2 = 0.51, Akaike information criterion [AIC] = 324, root average square error [RASE] = 14.21) or two-variable model (adjusted R2 = 0.61, AIC = 306, RASE = 10.95) that provided an action threshold for various disease scenarios based on number of hours of canopy RH above 90% and ST between 25 and 35°C in a 14-day window. Coupling an existing preseason risk index for stem rot, such as Peanut Rx, with the environmentally based predictors identified in this study would be a logical next step to optimize stem rot management. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
中文翻译:
影响花生茎腐病发展的环境因素:疾病管理的预测因素和行动阈值。
热带、亚热带和温带地区种植的花生容易发生茎腐病,这是一种由罗尔夫氏小孢子虫引起的土传病害。由于缺乏可靠的基于环境的调度建议,茎腐病控制严重依赖于按预定时间间隔施用的杀菌剂。我们在北佛罗里达州进行了六个站点年的接种田间实验,以研究罗氏菌核萌发之间的关系:接种物、花生作物茎腐病症状的发展以及土壤温度(ST)、土壤湿度等环境因素、相对湿度 (RH)、降水量、蒸散量和太阳辐射。在每次疾病评估之前,对 5 至 28 天的每小时和每日环境数据进行窗格分析,以使用相关分析、正则化回归和详尽的特征选择来选择模型预测因子。我们的结果表明,冠层内 ST(地下 0.05 m)和 RH(地上 0.15 m)是影响易感花生作物菌丝体活性进展的最重要的环境变量。决策树分析得出易于解释的一变量模型(调整后的 R2 = 0.51,Akaike 信息准则 [AIC] = 324,均方根误差 [RASE] = 14.21)或双变量模型(调整后的 R2 = 0.61) ,AIC = 306,RASE = 10.95),根据 14 天窗口内冠层相对湿度高于 90% 且 ST 介于 25 至 35°C 之间的小时数,为各种疾病情景提供了行动阈值。将现有的茎腐病季前风险指数(例如 Peanut Rx)与本研究中确定的基于环境的预测因素结合起来,将是优化茎腐病管理的合理下一步。 [公式:见文字] 版权所有 © 2024 作者。这是一篇根据 CC BY 4.0 国际许可证分发的开放获取文章。
更新日期:2023-08-15
中文翻译:
影响花生茎腐病发展的环境因素:疾病管理的预测因素和行动阈值。
热带、亚热带和温带地区种植的花生容易发生茎腐病,这是一种由罗尔夫氏小孢子虫引起的土传病害。由于缺乏可靠的基于环境的调度建议,茎腐病控制严重依赖于按预定时间间隔施用的杀菌剂。我们在北佛罗里达州进行了六个站点年的接种田间实验,以研究罗氏菌核萌发之间的关系:接种物、花生作物茎腐病症状的发展以及土壤温度(ST)、土壤湿度等环境因素、相对湿度 (RH)、降水量、蒸散量和太阳辐射。在每次疾病评估之前,对 5 至 28 天的每小时和每日环境数据进行窗格分析,以使用相关分析、正则化回归和详尽的特征选择来选择模型预测因子。我们的结果表明,冠层内 ST(地下 0.05 m)和 RH(地上 0.15 m)是影响易感花生作物菌丝体活性进展的最重要的环境变量。决策树分析得出易于解释的一变量模型(调整后的 R2 = 0.51,Akaike 信息准则 [AIC] = 324,均方根误差 [RASE] = 14.21)或双变量模型(调整后的 R2 = 0.61) ,AIC = 306,RASE = 10.95),根据 14 天窗口内冠层相对湿度高于 90% 且 ST 介于 25 至 35°C 之间的小时数,为各种疾病情景提供了行动阈值。将现有的茎腐病季前风险指数(例如 Peanut Rx)与本研究中确定的基于环境的预测因素结合起来,将是优化茎腐病管理的合理下一步。 [公式:见文字] 版权所有 © 2024 作者。这是一篇根据 CC BY 4.0 国际许可证分发的开放获取文章。