时变效应模拟在计算机图形学中起着至关重要的作用。水果病害是典型的时变现象。由于生物的复杂性,现有方法无法表征生物多样性和症状的生物规律。为此,本文提出了一种具有生物学意识、基于物理的框架,该框架尊重生物学知识,用于真实模拟水果霉病。模拟的症状包括皮肤变色、真菌生长和体积缩小。具体来说,我们利用零级动力学模型和反应扩散模型来表示与皮肤生物学特性相关的复杂水果皮肤变色。为了再现 3D 霉菌生长,我们采用泊松盘采样技术并提出了模板模型实例化方法。可以灵活改变菌丝模板模型来表征真菌生物多样性。为了模拟水果的生物结构,我们用基于生物的排列的颗粒填充水果网格内部。基于这种结构,我们提出了膨胀压力和基于 Lennard-Jones 力的自适应质量弹簧系统,以生物学方式模拟水果收缩。实验证明,该框架可以有效模拟灰霉病、白粉病和霜霉病等霉菌病害。我们的结果在视觉上引人注目并且接近真实情况。定量和定性实验都验证了所提出的方法。我们用基于生物学的排列的颗粒填充水果网内部。基于这种结构,我们提出了膨胀压力和基于 Lennard-Jones 力的自适应质量弹簧系统,以生物学方式模拟水果收缩。实验证明,该框架可以有效模拟灰霉病、白粉病和霜霉病等霉菌病害。我们的结果在视觉上引人注目并且接近真实情况。定量和定性实验都验证了所提出的方法。我们用基于生物学的排列的颗粒填充水果网内部。基于这种结构,我们提出了膨胀压力和基于 Lennard-Jones 力的自适应质量弹簧系统,以生物学方式模拟水果收缩。实验证明,该框架可以有效模拟灰霉病、白粉病和霜霉病等霉菌病害。我们的结果在视觉上引人注目并且接近真实情况。定量和定性实验都验证了所提出的方法。和霜霉病。我们的结果在视觉上引人注目并且接近真实情况。定量和定性实验都验证了所提出的方法。和霜霉病。我们的结果在视觉上引人注目并且接近真实情况。定量和定性实验都验证了所提出的方法。
"点击查看英文标题和摘要"
Realistic simulation of fruit mildew diseases: Skin discoloration, fungus growth and volume shrinkage
Time-varying effects simulation plays a critical role in computer graphics. Fruit diseases are typical time-varying phenomena. Due to the biological complexity, the existing methods fail to represent the biodiversity and biological law of symptoms. To this end, this paper proposes a biology-aware, physically-based framework that respects biological knowledge for realistic simulation of fruit mildew diseases. The simulated symptoms include skin discoloration, fungus growth, and volume shrinkage. Specifically, we take advantage of both the zero-order kinetic model and reaction–diffusion model to represent the complex fruit skin discoloration related to skin biological characteristics. To reproduce 3D mildew growth, we employ the Poisson-disk sampling technique and propose a template model instancing method. One can flexibly change hyphal template models to characterize the fungal biological diversity. To model the fruit’s biological structure, we fill the fruit mesh interior with particles in a biologically-based arrangement. Based on this structure, we propose a turgor pressure and a Lennard-Jones force-based adaptive mass–spring system to simulate the fruit shrinkage in a biological manner. Experiments verified that the proposed framework can effectively simulate mildew diseases, including gray mold, powdery mildew, and downy mildew. Our results are visually compelling and close to the ground truth. Both quantitative and qualitative experiments validated the proposed method.