郭老师推荐精读的论文:
2024
(a) P. R. Schreiner et al., Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew. Chem. Int. Ed. 2024, e202316364.
(b) P. P. Power et al., Beyond Steric Crowding: Dispersion Energy Donor Effects in Large Hydrocarbon Ligands. Acc. Chem. Res. 2022, 55, 1337.
(c) S. Kozuch et al., "Turning Over" Definitions in Catalytic Cycles. ACS Catal. 2012, 2, 2787.
(d) M. D. Greenhalgh, J. E. Taylor, and A. D. Smith, Best Practice Considerations for Using the Selectivity Factor, s, as a Metric for the Efficiency of Kinetic Resolutions. Tetrahedron, 2018, 74, 5554.
(e) P. R. Schreiner et al., London Dispersion Interactions Rather than Steric Hindrance Determine the Enantioselectivity of the Corey-Bakshi-Shibata Reduction. Angew. Chem. Int. Ed. 2021, 60, 4823.
(f) H. Zipse et al., The Size-Accelerated Kinetic Resolution of Secondary Alcohols. Angew. Chem. Int. Ed. 2021, 60, 774.
(g) E. Vedejs, and M. Jure, Efficiency in Nonenzymatic Kinetic Resolution. Angew. Chem. Int. Ed. 2005, 44, 3974.
(h) R. M. Gschwind et al., Tilting the Balance: London Dispersion Systematically Enhances Enantioselectivities in Brønsted Acid Catalyzed Transfer Hydrogenation of Imines. J. Am. Chem. Soc. 2022, 144, 19861.
(i) Z.-Q. Jiang et al., Spiro Compounds for Organic Light-Emitting Diodes. Acc. Mater. Res. 2021, 2, 1261.
(j) Z.-Q. Jiang, L.-S. Liao, C. Poriel et al., Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Light-Emitting Diodes: A New Molecular Design Approach. Angew. Chem. Int. Ed. 2022, 61, e202207204.
(k) E. J. W. List et al., The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials. Adv. Mater. 2002, 14, 374.
(l) T. Zheng, F. Liu, K. N. Houk, and Y. Liang et al., Computational Design of Ligands for the Ir-Catalyzed C5-Borylation of Indoles through Tuning Dispersion Interactions. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c098027
(m) W.-Q. Wu, C. Zheng, S.-L. You, and H. Shi et al., Chiral Bis(binaphthyl) Cyclopentadienyl Ligands for Rhodium-Catalyzed Desymmetrization of Diarylmethanes via Selective Arene Cooridination. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c10876.
(n) R. Yoshina and N. Fukui et al., Inner-Bond-Cleavage Approach to Figure-Eight Macrocycles from Planar Aromatic Hydrocarbons. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c07985.
(o) C. Wang, J. Guo and W.-L. Duan et al., Nickel-Catalyzed Enantioselective Alkylation of Primary Phosphines. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c10211.
(p) J. Jeong and S. Hong et al., Divergent Enantioselective Access to Diverse Chiral Compounds from Bicyclo[1.1.0]butanes and α,β-Unsaturated Ketones under Catalyst Control. J. Am. Chem. Soc. 2024, DOI: 10.1021/jacs.4c10153.
(q) T. Zheng and B. List et al., A Solid Nonvalent Organic Double-helix Framework Catalyzes Asymmetric [6+4] Cycloaddition. Science, 2024, 385, 765-770. XMOL解读;化学加解读;郭老师解读:持之以恒地专注于课题研究目标,认真细致地做实验/记录实现现象,及对反常实验现象的“刨根问底”式深究是获得重大科学发现的前提。
(r) Y. Zheng, T. Yang, Z. Lin and Z. Huang et al., Cobalt-Catalysed Desymmetrization of Malononitriles via Enantioselective Borohydride Reduction. Nat. Chem. 2024, DOI: 10.1038/s41557-024-01592-z. 【XMOL解读】
(s) M. Shigeno, and T. Korenaga et al., Catalytic Concerted SNAr reactions of fluoroarenes by an Organic Superbase. J. Am. Chem. Soc. 2024, ASAP, DOI: 10.1021/jacs.4c09042.
(t) V. P. Ananikov et al., Pd and Pt Catalyst Poisoning in the Study of Reaction Mechanisms: What Does the Mercury Test Mean for Catalysis? ACS Catal. 2019, 9, 2984-2995.