1. Xue, M.#, Ma, Z.#, Pan, Y., Mao, S., Sun, Y.*, Yuan, Y*. Enhancing photosynthesis of microalgae via photoluminescent g-C3N4 accelerated photoelectrons transfer in photosystem. Chemical Engineering Journal, 2024, 499, 156424. DOI: https://doi.org/10.1016/j.cej.2024.156424.
2. Ma, Zhiwen; Pan, Yali; Chen, Wenjing; Wang, Yutao; Yuan, Yupeng*; Sun, Yingqiang*. 5-methyl-salicylaldoxime based ionic liquids for non-destructive separation of protein and cadmium. Chemical Engineering Journal, 2024, 150543. DOI: https://doi.org/10.1016/j.cej.2024.150543Get rights and content.
3. Lu, T., Ma, Z., Pan, Y., Wu, Z., Yuan, Y.*, Sun, Y.*. Orthovanadate intercalated CuFe-LDO catalyzed hydrothermal liquefaction of microalgae for low nitrogen bio-oil production. Energy, 2024, 291, 130361. DOI: https://doi.org/10.1016/j.energy.2024.130361.
4. Pan, Y., Ma, Z., Shen, J., Liang, J., Yuan, Y., Lian, X.*, Sun, Y.*. Biotreatment of swine wastewater by mixotrophic Galdieria sulphuraria. Journal of Environmental Chemical Engineering, 2024, 12, 111858. DOI: https://doi.org/10.1016/j.jece.2023.111858.
5. Ma, Z., Lu, T., Pan, Y., Yuan, Y.*, Sun, Y. *. Short alkyl-imidazolium ionic liquids enhanced in-situ transesterification of microalgae. Fuel, 2024, 357, 129828. DOI: https://doi.org/10.1016/j.fuel.2023.129828.
6. Shi, M., Sun, S., Zhou, Q., Yuan, Y., Lian X.*, Wang, J.*, Sun, Y.* MgAl‑layered double hydroxides catalyzed hydrothermal liquefaction of tigernut for bio-oil production. Biomass Conversion and Biorefinery, 2023, DOI: https://doi.org/10.1007/s13399-023-04069-0.
7. Lu, T. #, Sun, Y. #, Shi, M., Ding, D., Ma, Z., Pan, Y., Yuan, Y. *, Liao, W. *, Sun, Y.*. Ni dopped MgAl hydrotalcite catalyzed hydrothermal liquefaction of microalgae for low N, O bio-oil production. Fuel, 2023, 126437. DOI: https://doi.org/10.1016/j.fuel.2022.126437
8. Ding, D. #, Shen, Z. #, Ma, T., Sun, Y., Shi, M., Lu, T., Wu, B. *, Luque, R. *, Sun, Y.*. Competition of dual roles of ionic liquids during in situ transesterification of wet algae. ACS Sustainable Chemistry & Engineering, 2022,10, 13692-13701. DOI: https://doi.org/10.1021/acssuschemeng.2c03641.
9. Sun, Y., Lu, T., Pan, Y., Shi, M., Ding, D., Ma, Z., Liu, J., Yuan, Y.*, Fei, L.*, Sun, Y.*. Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater. Environmental Science and Ecotechnology, 2022, 12, 100204. https://doi.org/10.1016/j.ese.2022.100204 (IF: 9.37)
10. Feng, Q., Sun, Y., Li, A., Lin, X., Lu, T., Ding, D., Shi, M., Sun, Y.*, Yuan, Y.*, Revealing dual roles of g-C3N4 in Chlorella vulgaris cultivation. Journal of Hazardous Materials, 2021, 127639. https://www.sciencedirect.com/science/article/pii/S0304389421026078 (IF:10.588)
11. Sun, Y., Shi, M., Lu, T., Ding, D., Sun, Y*. Bio-removal of PtCl62− complex by Galdieria sulphuraria. Science of The Total Environment, 2021, 149021.https://doi.org/10.1016/j.scitotenv.2021.149021 (IF: 7.963)
12. Shen, Z., Ma, T., Fei, L, Li, A., Liu, J., Xu, Z.*, Hu, X.*, Sun, Y*. MgAl-LDH/LDO-catalyzed hydrothermal deoxygenation of microalgae for low-oxygen biofuel production. ACS ES&T Engineering, 2021, 1(6), 989-999. DOI: https://doi.org/10.1021/acsestengg.1c00024. https://pubs.acs.org/doi/10.1021/acsestengg.1c00024
13. Meng, Y., Li, A., Li, H., Shen, Z., Ma, T., Liu, J., Zhou, Z., Feng, Q., Sun, Y.*. Effect of membrane blocking on attached cultivation of microalgae. Journal of Cleaner Production, 2021, 284, 124695. https://www.sciencedirect.com/science/article/pii/S0959652620347399 (IF: 9.297)
14. Fei, L.*, He, Z., LaCoste J.D., Nguyen, T.H., Sun, Y*. A mini review on superhydrophobic and transparent surfaces. Chemical Record, 2020, 20(11), 1257-1268. DOI: 10.1002/tcr.202000075.https://onlinelibrary.wiley.com/doi/full/10.1002/tcr.202000075 (IF: 6.771)
15. Shen, Z., Long, F., Ma, T., Li, H., Li, A., Feng, Q., Liu, J., Sun, Y*. Keggin-type (Mo-V-P) heteropolyacids catalyzed selective hydrothermal oxidation of microalgae for low nitrogen biofuel production. ChemSusChem, 2020, 13(22), 6016-6027. DOI: 10.1002/cssc.202001817.https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.202001817 (IF: 8.928)
16. Ma, T., Shen, Z., Li, H., Feng, Q., Sun, Y.*, Deng, S*. Effect of H-bonding on BrØnsted acid ionic liquids catalyzed in situ transesterification of wet algae. ACS Sustainable Chemistry & Engineering, 2020, 8:4647-4657. https://pubs.acs.org/doi/10.1021/acssuschemeng.0c00730 (IF:8.198)
17. Li, H., Shen, Z., Li, A., Yang, J., Sun, Y.*. Optimization of [Bmim][HSO4] catalyzed transesterification of camelina oil. Chemical Engineering & Technology, 2019, 43(3):403-411.https://onlinelibrary.wiley.com/doi/full/10.1002/ceat.201900477 (IF:1.728)
Books
1. Sun, Y. Artificial photosynthesis from materials to devices: Chapter 6 Artificial photosynthesis of algae for biofuel production, 2020,211-241.https://novapublishers.com/shop/artificial-photosynthesis-from-materials-to-devices/
Before Anhui Univerisity
1. Sun, Y., Xu, C., Igou T., et al. Effect of water content on [Bmim][HSO4] assisted in-situ transesterification of wet Nannochloropsis oceanica sludge. Applied Energy, 2018, 226:461-468.https://www.sciencedirect.com/science/article/pii/S0306261918308948 (IF: 9.746)
2. Sun, Y., Cooke, P., Reddy, H.K., et al. 1-Butyl-3- methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis with methanol under mild conditions. Energy Conversion and Management, 2017,132:213-220.https://www.sciencedirect.com/science/article/pii/S0196890416309888 (IF: 9.709)
3. Sun, Y., Ponnusamy, S., Muppaneni, T., et al. Transesterification of camelina sativa oil with supercritical alcohol mixtures. Energy Conversion and Management, 2015, 101:402-409.https://www.sciencedirect.com/science/article/pii/S019689041500521X (IF: 9.709)
4. Sun, Y., Ponnusamy, S., Muppaneni, T., et al. Optimization of high-energy density biodiesel production from camelina sativa oil under supercritical 1-butanol conditions. Fuel, 2014, 135:530-536.https://www.sciencedirect.com/science/article/pii/S0016236114006383 (IF:6.609)
5. Sun, Y., Reddy, H.K., Muppaneni, T., et al. A comparative study of direct transesterification of camelina oil under supercritical methanol, ethanol and 1-butanol conditions. Fuel, 2014, 135:522-529.https://www.sciencedirect.com/science/article/pii/S001623611400636X(IF: 6.609)