近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]XiaoshunZhang,TaoYu,ZhenningPan,etal.Lifelonglearningforcomplementarygenerationcontrolofinterconnectedpowergridswithhigh-penetrationrenewablesandEVs.IEEETransactionsonPowerSystems,2018,33(4):4097-4110.(SCI,2区Top,IF=5.255)
[2]XiaoshunZhang,QingLi,TaoYu,etal.ConsensustransferQ-learningfordecentralizedgenerationcommanddispatchbasedonvirtualgenerationtribe.IEEETransactionsonSmartGrid,2018,9(3):2152-2165.(SCI,1区Top,IF=7.364)
[3]XiaoshunZhang,YixuanChen,TaoYu,etal.Equilibrium-inspiredmultiagentoptimizerwithextremetransferlearningfordecentralizedoptimalcarbon-energycombined-flowoflarge-scalepowersystems.AppliedEnergy,2017,189:157-176.(SCI,1区Top,IF=7.900)
[4]XiaoshunZhang,TaoYu,BoYang,etal.Approximateidealmulti-objectivesolutionQ(λ)learningforoptimalcarbon-energycombined-flowinmulti-energypowersystems.EnergyConversionandManagement,2015,106:543-556.(SCI,1区Top,IF=6.377)
[5]XiaoshunZhang,TaoYu,BoYang,etal.Virtualgenerationtribebasedrobustcollaborativeconsensusalgorithmfordynamicgenerationcommanddispatchoptimizationofsmartgrid.Energy,2016,101:34-51.(SCI,1区Top,IF=4.968)
[6]XiaoshunZhang,TaoBao,TaoYu,etal.DeeptransferQ-learningwithvirtualleader-followerforsupply-demandStackelberggameofsmartgrid.Energy,2017,133:348-365.(SCI,1区Top,IF=4.968)
[7]XiaoshunZhang,TaoYu,ZhaoXu,etal.Acyber-physical-socialsystemwithparallellearningfordistributedenergymanagementofamicrogrid.Energy,2018,165:205-221.(SCI,1区Top,IF=4.968)
[8]DezhiWang,XiaoshunZhang*,KaipingQu,etal.Paretotribeevolutionwithequilibrium-baseddecisionformulti-objectiveoptimizationofmultiplehomeenergymanagementsystems.EnergyandBuildings,2018,159:11-23.(SCI,2区Top,IF=4.457)
[9]XiaoshunZhang,DezhiWang,TaoYu,etal.Ensemblelearningforoptimalactivepowercontrolofdistributedenergyresourcesandthermostaticallycontrolledloadsinanislandedmicrogrid.InternationalJournalofHydrogenEnergy,2018,Inpress.(SCI,2区,IF=4.229)
[10]XiaoshunZhang,TaoYu,BoYang,etal.Acceleratingbio-inspiredoptimizerwithtransferreinforcementlearningforreactivepoweroptimization.Knowledge-BasedSystems,2017,116:26-38.(SCI,2区,IF=4.396)
[11]TaoYu,XiaoshunZhang,BinZhou,etal.HierarchicalcorrelatedQ-learningformulti-layeroptimalgenerationcommanddispatch.InternationalJournalofElectricalPower&EnergySystems,2016,78:1-12.(SCI,2区,IF=3.610,导师第一作者)
[12]XiaoshunZhang,TaoYu,LexinGuo,etal.Cultureevolutionlearningforoptimalcarbon-energycombined-flow.IEEEAccess,2018,6:15521-15531.(SCI,3区,IF=3.557)
[13]XiaoshunZhang,TaoYu,ZhiyiZhang,etal.Multi-agentbargaininglearningfordistributedenergyhubeconomicdispatch.IEEEAccess,2018,6:39564-39573.(SCI,3区,IF=3.557)
[14]XiaoshunZhang,HaoXu,TaoYu,etal.Robustcollaborativeconsensusalgorithmfordecentralizedeconomicdispatchwithapracticalcommunicationnetwork.ElectricPowerSystemsResearch,2016,140:597-610.(SCI,3区,IF=2.856)
[15]XiaofengDong,XiaoshunZhang*,TongJiang.Adaptiveconsensusalgorithmfordistributedheat-electricityenergymanagementforanislandedmicrogrid.Energies,2018,11(9),2236.(SCI,3区,IF=2.676)
[16]ZhukuiTan,XiaoshunZhang*,BaimingXie,etal.Fastlearningoptimizerforreal-timeoptimalenergymanagementofagrid-connectedmicrogrid.IETGenerationTransmission&Distribution,2018,12(12):2977-2987.(SCI,3区,IF=2.618)
[17]MinTan,ChuanjiaHan,XiaoshunZhang*,etal.HierarchicallycorrelatedequilibriumQ-learningformulti-areadecentralizedcollaborativereactivepoweroptimization.CSEEJournalofPowerandEnergySystems,2016,2(3):65-72.(ESCI收录)
[18]BoYang,XiaoshunZhang,TaoYu,etal.Groupedgreywolfoptimizerformaximumpowerpointtrackingofdoubly-fedinductiongeneratorbasedwindturbine.EnergyConversionandManagement,2017,133:427-443.(SCI,1区Top,IF=6.377,高被引)
[19]Kaiping,TaoYu,XiaoshunZhang,etal.Homogenizedadjacentpointsmethodformulti-objectiveoptimalenergyflowofintegratedelectricityandgassystem.AppliedEnergy,2018,Inpress.(SCI,1区Top,IF=7.900)
[20]LinfeiYin,TaoYu,XiaoshunZhang,etal.Relaxeddeeplearningforreal-timeeconomicgenerationdispatchandcontrolwithunifiedtimescale.Energy,2018,149:11-23.(SCI,1区Top,IF=4.968)
[21]LeiXi,TaoYu,BoYang,XiaoshunZhang.Awolfpackhuntingstrategybasedvirtualtribescontrolforautomaticgenerationcontrolofsmartgrid.AppliedEnergy,2016,178:198-211.(SCI,1区Top,IF=7.900)
[22]BoYang,TaoYu,HongchunShu,XiaoshunZhang,etal.DemocraticjointoperationsalgorithmforoptimalpowerextractionofPMSGbasedwindenergyconversionsystem.EnergyConversionandManagement,2018,159:312-326.(SCI,1区Top,IF=6.377)
[23]LeiXi,TaoYu,BoYang,XiaoshunZhang.Anovelmulti-agentdecentralizedwinorlearnfastpolicyhill-climbingwitheligibilitytracealgorithmforsmartgenerationcontrolofinterconnectedcomplexpowergrids.EnergyConversionandManagement,2015,103:82-93.(SCI,1区Top,IF=6.377)
[24]KaipingQu,TaoYu,LinniHuang,BoYang,XiaoshunZhang.Decentralizedoptimalmulti-energyflowoflarge-scaleintegratedenergysystemsinacarbontradingmarket.Energy,2018,149:779-791.(SCI,1区Top,IF=4.968)
[25]LefengChen,TaoYu,XiaoshunZhang,etal.ParallelCyber-Physical-SocialSystemsBasedSmartEnergyRoboticDispatcherandKnowledgeAutomation:Concepts,ArchitecturesandChallenges.IEEEIntelligentSystems,2018,Inpress.(SCI,2区,IF=2.596)
[26]LinfeiYin,TaoYu,BoYang,XiaoshunZhang.Adaptivedeepdynamicprogrammingforintegratedfrequencycontrolofmulti-areamulti-microgridsystems.Neurocomputing,2018,Inpress.(SCI,2区,IF=3.241)
[27]ChuanjiaHan,BoYang,TaoBao,TaoYu,XiaoshunZhang.Bacteriaforagingreinforcementlearningforrisk-basedeconomicdispatchviaknowledgetransfer.Energies,2017,10(5),638.(SCI,3区,IF=2.676)
[28]BoYang,TaoYu,XiaoshunZhang,etal.Interactiveteaching–learningoptimiserforparametertuningofVSC-HVDCsystemswithoffshorewindfarmintegration.IETGenerationTransmission&Distribution,2018,12(3):678-687(SCI,3区,IF=2.618)
[29]LinfeiYin,TaoYu,LvZhou,LinniHuang,XiaoshunZhang,etal.Artificialemotionalreinforcementlearningforautomaticgenerationcontroloflarge-scaleinterconnectedpowergrids.IETGenerationTransmission&Distribution,2017,11(9):2305-2313.(SCI,3区,IF=2.618)
[30]LinniHuang,BoYang,XiaoshunZhang,etal.Optimalpowertrackingofdoublyfedinductiongenerator-basedwindturbineusingswarmmoth-flameoptimizer.TransactionsoftheInstituteofMeasurementandControl,2017:0142331217712091.(SCI,4区,IF=1.579)
[31]余涛,张孝顺*.一种具有记忆自学习能力的快速动态寻优算法及其无功优化求解[J].中国科学:技术科学,2016,46(3):256-267.(导师为第一作者,EI期刊)
[32]张孝顺*,余涛.互联电网AGC功率动态分配的虚拟发电部落协同一致性算法[J].中国电机工程学报,2015,35(15):3750-3759.(EI期刊)
[33]张孝顺*,李清,余涛,陈柏喜.基于协同一致性迁移Q学习算法的虚拟发电部落AGC功率动态分配[J].中国电机工程学报,2017,37(5):1455-1466.(EI期刊)
[34]包涛,张孝顺*,余涛,刘希喆,王德志.反映实时供需互动的Stackelberg博弈模型及其强化学习求解[J].中国电机工程学报,2018,38(10):2947-2955.(EI期刊)
[35]张孝顺*,郑理民,余涛.基于多步回溯Q(λ)学习的电网多目标最优碳流算法[J].电力系统自动化,2014,38(17):118-123.(EI期刊)
[36]张孝顺*,余涛,唐捷.基于分层相关均衡强化学习的CPS指令优化分配算法[J].电力系统自动化,2015,39(8):80-86.(EI期刊)
[37]张孝顺*,余涛,唐捷.基于CEQ(λ)多智能体协同学习的互联电网性能标准控制指令动态分配优化算法[J].电工技术学报,2016,31(8):125-133.(EI期刊)
[38]张孝顺*,余涛.互联电网自动发电控制功率分配的改进逼近于理想解的排序-Q多目标优化算法[J].控制理论与应用,2015,32(4):497-503.(EI期刊)
[39]徐茂鑫,张孝顺*,余涛.迁移蜂群优化算法及其在无功优化中的应用[J].自动化学报.2017,43(1):83-93.(EI期刊)
[40]徐豪,张孝顺*,余涛.非理想通信网络条件下的经济调度鲁棒协同一致性算法[J].电力系统自动化,2016,40(14):15-24.(EI期刊)
[41]韩传家,张孝顺*,余涛,瞿凯平.风险调度中引入知识迁移的细菌觅食强化学习优化算法[J].电力系统自动化,2017,41(8):69-77.(EI期刊)
[42]潘振宁,张孝顺*,余涛,王德志.大规模电动汽车集群分层实时优化调度[J].电力系统自动化,2017,41(16):96-104.(EI期刊)
[43]张泽宇,张孝顺*,余涛.孤岛智能配电网下的AGC机组一致性协同控制算法[J].控制理论与应用,2016,33(5):599-607.(EI期刊)
[44]王德志,张孝顺*,余涛,等.基于帕累托纳什均衡博弈的电网/多元家庭用户互动多目标优化算法[J].电力自动化设备,2017,37(5):114-121.(EI期刊)
[45]陈艺璇,张孝顺*,余涛.基于纳什均衡迁移学习的碳-能复合流自律优化[J].控制理论与应用,2018,35(5):668-681.(EI期刊)
[46]瞿凯平,张孝顺,余涛,韩传家.基于知识迁移Q学习算法的多能源系统联合优化调度[J].电力系统自动化,2017,41(15):18-25.(EI期刊)
[47]王德志,张孝顺,刘前进,等.基于集成学习的孤岛微电网源-荷协同频率控制[J].电力系统自动化.2018,42(10):46-52.(EI期刊)
[48]李清,张孝顺,余涛,等.电动汽车充换电站参与电网AGC功率分配的成本一致性算法[J].电力自动化设备.2018,38(3):80-87(EI期刊)
[49]陈艺璇,余涛,张孝顺,等.考虑多种污染物时空分布的电力系统高维多目标优化调度策略[J].中国科学:技术科学,2018,doi:10.1360/N092017-00355(EI期刊)
[50]程乐峰,余涛,张孝顺,等.信息-物理-社会融合的智慧能源调度机器人及其知识自动化:框架、技术与挑战[J].中国电机工程学报.2018,38(1):25-40(EI期刊)
[51]席磊,余涛,张孝顺,等.基于狼爬山快速多智能体学习策略的电力系统智能发电控制方法[J].电工技术学报,2015,30(23):93-101.(EI期刊)
[52]杨博,黄琳妮,张孝顺,余涛.多端高压直流输电系统的自适应无源控制器设计[J].控制理论与应用,2017,34(5):637-647(EI期刊)
[53]瞿凯平,黄琳妮,余涛,张孝顺.碳交易机制下多区域综合能源系统的分散调度[J].中国电机工程学报,2018,38(3):697-707(EI期刊)
[54]殷林飞,余涛,张泽宇,张孝顺.基于深度自适应动态规划的孤岛主动配电网发电控制与优化一体化算法[J].控制理论与应用,2018,35(2):169-183(EI期刊)
[55]殷林飞,余涛,陈吕鹏,张孝顺.基于CPSS平行系统懒惰强化学习算法的实时发电调控[J].自动化学报.(已录用,EI期刊)
[56]杨博,束洪春,张瑞颖,黄琳妮,张孝顺,余涛.针对柔性高压直流输电系统的交互式教-学优化算法[J].控制与决策.DOI:10.13195/j.kzyjc.2017.1080(已录用,EI期刊)
[57]潘振宁,王克英,瞿凯平,余涛,王德志,张孝顺.考虑大量电动汽车接入下的电-气-热多能耦合系统协同优化调度[J].电力系统自动化.2018,42(4):104-112(EI期刊)
[58]郑宝敏,余涛,瞿凯平,张孝顺,殷林飞.多区域并行协同下的分布式帕累托多目标最优潮流求解[J].电力系统自动化.(已录用,EI期刊)