当前位置: X-MOL首页全球导师 国内导师 › 陈彬

个人简介

浙江绍兴人, 2018年获香港理工大学工学博士学位。博士论文获CIB最佳博士论文奖。长期从事建筑新能源、储能技术方面的研究。目前在国际学术SCI收录期刊上发表了论文30余篇,h-index=11;其中包括能源领域Top期刊 Applied Energy(IF=7.9),Energy Environ. Sci (IF=29.518), Energy Conversion and Management (IF=5.589)等。目前科研成果被SCI期刊共引用400余次。担任International Journal of Hydrogen Energy; Applied energy; Energy; Energy Conversion and Management; International Journal of Energy Research 等多本国际学术期刊审稿人。 教育及科研经历 2019年3月–至今 深圳大学 土木与交通工程学院;深地科学与绿色能源研究院 助理教授 2017年 3月-2017年8月 荷兰代尔夫特理工大学Mechanical, Maritime and Materials Engineering (3ME) 研究助理 2016年10月-2016年12月 南洋理工大学 School of Mechanical & Aerospace Engineering 研究助理 2014年8月-2018年8月 香港理工大学 建筑与房地产系 哲学博士 2010年8月-2014年6月 西安交通大学 能源动力系统及自动化专业,制冷与低温工程学士

研究领域

1建筑能源系统 2建筑相转变储能技术 3有限元多物理场仿真

科研项目 1. 欧盟Research and Innovation action of European Commossion CORDIS(Community Research and Development Information Service);BALANCE:Increasing penetration of renewable power, alternative fuels and grid flexibility by cross-vector electrochemical processes;01-DEC-2016到30-NOV-2019,主研人 2. 香港Research Grants Council (RGC)项目Development of Efficient and Durable Rechargeable Batteries with Bilayer Oxygen Ion Conducting Electrolyte and Nano-structured Electrodes (PolyU 152127/14E);01-NOV-2014到31-OCT-2017主研人 3. 香港Environment and Conservation Fund (ECF)项目A New Method for Simultaneous Plastic Waste Treatment and Electricity Generation Using High Performance Direct Waste Solid Oxide Fuel Cells (DW-SOFC) (ECF 54/2015); 01-JUN-2016到28-FEB-2018 主研人

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

期刊收录文章 [0] Chen, B., Xu, H., Zhang, Y., Dong, F., Tan, P., Zhao, T., & Ni, M. (2019). Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generation. International Journal of Hydrogen Energy, 44(29), 15313–15321. [1] Chen B, Hajimolana YS, Venkataraman V, Ni M, Aravind PV. Integration of Reversible Solid Oxide Cells with methane synthesis (ReSOC-MS) in grid stabilization. Energy Procedia 2019;158:2077–84. [2] Cai W, Liu J, Liu P, Liu Z, Xu H, Chen B, et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw. Int J Energy Res 2018. [3] Chen B, Xu H, Chen L, Li Y, Xia C, Ni M. Modelling of One-Step Methanation Process Combining SOECs and Fischer-Tropsch-like Reactor. J Electrochem Soc 2016;163:F3001–8. [4] Chen B, Xu H, Ni M. Modelling of SOEC-FT reactor: Pressure effects on methanation process. Appl Energy 2017;185:814–24. [5] Chen B, Xu H, Ni M. Modelling of finger-like channelled anode support for SOFCs application. Sci Bull 2016;61:1324–32. [6] Chen B, Xu H, Sun Q, Zhang H, Tan P, Cai W, et al. Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermal-electrochemical modelling study. Energy Convers Manag 2018;167:37–44. [7] Chen B, Xu H, Tan P, Zhang Y, Xu X, Cai W, et al. Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells. Appl Energy 2019;237:476–86. [8] Chen B, Xu H, Zhang H, Tan P, Cai W, Ni M. A novel design of solid oxide electrolyser integrated with magnesium hydride bed for hydrogen generation and storage – A dynamic simulation study. Appl Energy 2017;200:260–72. [9] Shang W, Yu W, Tan P, Chen B, Xu H, Ni M. A high-performance Zn battery based on self-assembled nanostructured NiCo 2 O 4 electrode. J Power Sources 2019;421:6–13. [10] Tan P, Chen B, Xu H, Cai W, He W, Liu M, et al. Co 3 O 4 Nanosheets as Active Material for Hybrid Zn Batteries. Small 2018;14:1800225. [11] Tan P, Chen B, Xu H, Cai W, He W, Ni M. In-situ growth of Co 3 O 4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co 3 O 4 and Zn-air batteries. Appl Catal B Environ 2019;241:104–12. [12] Tan P, Chen B, Xu H, Cai W, He W, Ni M. Investigation on the electrode design of hybrid Zn-Co 3 O 4 /air batteries for performance improvements. Electrochim Acta 2018;283:1028–36. [13] Tan P, Chen B, Xu H, Cai W, He W, Ni M. Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability. Energy 2019;166:1241–8. [14] Tan P, Chen B, Xu H, Cai W, He W, Zhang H, et al. Integration of Zn-Ag and Zn-air Batteries: A Hybrid Battery with the Advantages of Both. ACS Appl Mater Interfaces 2018;10:acsami.8b10778. [15] Tan P, Chen B, Xu H, Cai W, Liu M, Shao Z, et al. Nanoporous NiO/Ni(OH) 2 Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability. J Electrochem Soc 2018;165:A2119–26. [16] Tan P, Chen B, Xu H, Zhang H, Cai W, Ni M, et al. Flexible Zn- and Li-Air Batteries: Recent Advances, Challenges, and Future Perspectives. Energy Environ Sci 2017;10:2056–80. [17] Tan P, Ni M, Chen B, Kong W, Kong W, Shao Z. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product. Appl Energy 2017;203:254–66. [18] Wu Z, Tan P, Chen B, Cai W, Chen M, Xu X, et al. Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK. Energy 2019;175:567–79. [19] Wu Z, Tan P, Zhu P, Cai W, Chen B, Yang F, et al. Performance analysis of a novel SOFC-HCCI engine hybrid system coupled with metal hydride reactor for H2 addition by waste heat recovery. Energy Convers Manag 2019;191:119–31. [20] Xu H, Chen B, Irvine J, Ni M. Modeling of CH4-assisted SOEC for H2O/CO2co-electrolysis. Int J Hydrogen Energy 2016;41:21839–49. [21] Xu H, Chen B, Liu J, Ni M. Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration. Appl Energy 2016;178:353–62. [22] Xu H, Chen B, Ni M. Modeling of Direct Carbon-Assisted Solid Oxide Electrolysis Cell (SOEC) for Syngas Production at Two Different Electrodes. J Electrochem Soc 2016;163:F3029–35. [23] Xu H, Chen B, Tan P, Cai W, He W, Farrusseng D, et al. Modeling of all porous solid oxide fuel cells. Appl Energy 2018;219:105–13. [24] Xu H, Chen B, Tan P, Cai W, Wu Y, Zhang H, et al. A feasible way to handle the heat management of direct carbon solid oxide fuel cells. Appl Energy 2018;226:881–90. [25] Xu H, Chen B, Tan P, Sun Q, Maroto-Valer MM, Ni M. Modelling of a hybrid system for on-site power generation from solar fuels. Appl Energy 2019;240:709–18. [26] Xu H, Chen B, Tan P, Xuan J, Maroto-Valer MM, Farrusseng D, et al. Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design. Appl Energy 2019;235:602–11. [27] Xu H, Chen B, Tan P, Zhang H, Yuan J, Irvine JTS, et al. Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine. Energy Convers Manag 2018;165:761–70. [28] Xu H, Chen B, Tan P, Zhang H, Yuan J, Liu J, et al. Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle. Energy 2017;140:979–87. [29] Xu H, Chen B, Zhang H, Kong W, Liang B, Ni M. The thermal effect in direct carbon solid oxide fuel cells. Appl Therm Eng 2017;118:652–62. [30] Xu H, Chen B, Zhang H, Sun Q, Yang G, Ni M. Modeling of direct carbon solid oxide fuel cells with H 2 O and CO 2 as gasification agents. Int J Hydrogen Energy 2017;42:15641–51. [31] Xu H, Chen B, Zhang H, Tan P, Yang G, Irvine JTS, et al. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction. J Power Sources 2018;382:135–43. [32] Yang Z, Xu H, Chen B, Tan P, Zhang H, Ni M. Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell. Energy Convers Manag 2018;171:279–86. [33] Zhang H, Chen B, Xu H, Ni M. Thermodynamic assessment of an integrated molten carbonate fuel cell and absorption refrigerator hybrid system for combined power and cooling applications. Int J Refrig 2016;70:1–12. [34] Zhang H, Kong W, Dong F, Xu H, Chen B, Ni M. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Convers Manag 2017;148:1382–90. [35] Zhang H, Xu H, Chen B, Dong F, Ni M. Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells. Energy 2017;132:280–8. [36] Zhang X, Ni M, Dong F, He W, Chen B, Xu H. Thermodynamic analysis and performance optimization of solid oxide fuel cell and refrigerator hybrid system based on H 2 and CO. Appl Therm Eng 2016;108:347–52.

推荐链接
down
wechat
bug