近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
期刊收录文章
[0] Chen, B., Xu, H., Zhang, Y., Dong, F., Tan, P., Zhao, T., & Ni, M. (2019). Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generation. International Journal of Hydrogen Energy, 44(29), 15313–15321.
[1] Chen B, Hajimolana YS, Venkataraman V, Ni M, Aravind PV. Integration of Reversible Solid Oxide Cells with methane synthesis (ReSOC-MS) in grid stabilization. Energy Procedia 2019;158:2077–84.
[2] Cai W, Liu J, Liu P, Liu Z, Xu H, Chen B, et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw. Int J Energy Res 2018.
[3] Chen B, Xu H, Chen L, Li Y, Xia C, Ni M. Modelling of One-Step Methanation Process Combining SOECs and Fischer-Tropsch-like Reactor. J Electrochem Soc 2016;163:F3001–8.
[4] Chen B, Xu H, Ni M. Modelling of SOEC-FT reactor: Pressure effects on methanation process. Appl Energy 2017;185:814–24.
[5] Chen B, Xu H, Ni M. Modelling of finger-like channelled anode support for SOFCs application. Sci Bull 2016;61:1324–32.
[6] Chen B, Xu H, Sun Q, Zhang H, Tan P, Cai W, et al. Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermal-electrochemical modelling study. Energy Convers Manag 2018;167:37–44.
[7] Chen B, Xu H, Tan P, Zhang Y, Xu X, Cai W, et al. Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells. Appl Energy 2019;237:476–86.
[8] Chen B, Xu H, Zhang H, Tan P, Cai W, Ni M. A novel design of solid oxide electrolyser integrated with magnesium hydride bed for hydrogen generation and storage – A dynamic simulation study. Appl Energy 2017;200:260–72.
[9] Shang W, Yu W, Tan P, Chen B, Xu H, Ni M. A high-performance Zn battery based on self-assembled nanostructured NiCo 2 O 4 electrode. J Power Sources 2019;421:6–13.
[10] Tan P, Chen B, Xu H, Cai W, He W, Liu M, et al. Co 3 O 4 Nanosheets as Active Material for Hybrid Zn Batteries. Small 2018;14:1800225.
[11] Tan P, Chen B, Xu H, Cai W, He W, Ni M. In-situ growth of Co 3 O 4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co 3 O 4 and Zn-air batteries. Appl Catal B Environ 2019;241:104–12.
[12] Tan P, Chen B, Xu H, Cai W, He W, Ni M. Investigation on the electrode design of hybrid Zn-Co 3 O 4 /air batteries for performance improvements. Electrochim Acta 2018;283:1028–36.
[13] Tan P, Chen B, Xu H, Cai W, He W, Ni M. Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability. Energy 2019;166:1241–8.
[14] Tan P, Chen B, Xu H, Cai W, He W, Zhang H, et al. Integration of Zn-Ag and Zn-air Batteries: A Hybrid Battery with the Advantages of Both. ACS Appl Mater Interfaces 2018;10:acsami.8b10778.
[15] Tan P, Chen B, Xu H, Cai W, Liu M, Shao Z, et al. Nanoporous NiO/Ni(OH) 2 Plates Incorporated with Carbon Nanotubes as Active Materials of Rechargeable Hybrid Zinc Batteries for Improved Energy Efficiency and High-Rate Capability. J Electrochem Soc 2018;165:A2119–26.
[16] Tan P, Chen B, Xu H, Zhang H, Cai W, Ni M, et al. Flexible Zn- and Li-Air Batteries: Recent Advances, Challenges, and Future Perspectives. Energy Environ Sci 2017;10:2056–80.
[17] Tan P, Ni M, Chen B, Kong W, Kong W, Shao Z. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product. Appl Energy 2017;203:254–66.
[18] Wu Z, Tan P, Chen B, Cai W, Chen M, Xu X, et al. Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK. Energy 2019;175:567–79.
[19] Wu Z, Tan P, Zhu P, Cai W, Chen B, Yang F, et al. Performance analysis of a novel SOFC-HCCI engine hybrid system coupled with metal hydride reactor for H2 addition by waste heat recovery. Energy Convers Manag 2019;191:119–31.
[20] Xu H, Chen B, Irvine J, Ni M. Modeling of CH4-assisted SOEC for H2O/CO2co-electrolysis. Int J Hydrogen Energy 2016;41:21839–49.
[21] Xu H, Chen B, Liu J, Ni M. Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration. Appl Energy 2016;178:353–62.
[22] Xu H, Chen B, Ni M. Modeling of Direct Carbon-Assisted Solid Oxide Electrolysis Cell (SOEC) for Syngas Production at Two Different Electrodes. J Electrochem Soc 2016;163:F3029–35.
[23] Xu H, Chen B, Tan P, Cai W, He W, Farrusseng D, et al. Modeling of all porous solid oxide fuel cells. Appl Energy 2018;219:105–13.
[24] Xu H, Chen B, Tan P, Cai W, Wu Y, Zhang H, et al. A feasible way to handle the heat management of direct carbon solid oxide fuel cells. Appl Energy 2018;226:881–90.
[25] Xu H, Chen B, Tan P, Sun Q, Maroto-Valer MM, Ni M. Modelling of a hybrid system for on-site power generation from solar fuels. Appl Energy 2019;240:709–18.
[26] Xu H, Chen B, Tan P, Xuan J, Maroto-Valer MM, Farrusseng D, et al. Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design. Appl Energy 2019;235:602–11.
[27] Xu H, Chen B, Tan P, Zhang H, Yuan J, Irvine JTS, et al. Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine. Energy Convers Manag 2018;165:761–70.
[28] Xu H, Chen B, Tan P, Zhang H, Yuan J, Liu J, et al. Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle. Energy 2017;140:979–87.
[29] Xu H, Chen B, Zhang H, Kong W, Liang B, Ni M. The thermal effect in direct carbon solid oxide fuel cells. Appl Therm Eng 2017;118:652–62.
[30] Xu H, Chen B, Zhang H, Sun Q, Yang G, Ni M. Modeling of direct carbon solid oxide fuel cells with H 2 O and CO 2 as gasification agents. Int J Hydrogen Energy 2017;42:15641–51.
[31] Xu H, Chen B, Zhang H, Tan P, Yang G, Irvine JTS, et al. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction. J Power Sources 2018;382:135–43.
[32] Yang Z, Xu H, Chen B, Tan P, Zhang H, Ni M. Numerical modeling of a cogeneration system based on a direct carbon solid oxide fuel cell and a thermophotovoltaic cell. Energy Convers Manag 2018;171:279–86.
[33] Zhang H, Chen B, Xu H, Ni M. Thermodynamic assessment of an integrated molten carbonate fuel cell and absorption refrigerator hybrid system for combined power and cooling applications. Int J Refrig 2016;70:1–12.
[34] Zhang H, Kong W, Dong F, Xu H, Chen B, Ni M. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Convers Manag 2017;148:1382–90.
[35] Zhang H, Xu H, Chen B, Dong F, Ni M. Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells. Energy 2017;132:280–8.
[36] Zhang X, Ni M, Dong F, He W, Chen B, Xu H. Thermodynamic analysis and performance optimization of solid oxide fuel cell and refrigerator hybrid system based on H 2 and CO. Appl Therm Eng 2016;108:347–52.