当前位置: X-MOL首页全球导师 国内导师 › 潘彬彬

个人简介

教育经历: 2009/9 - 2012/6,中山大学,应用数学,博士 2006/9 – 2009/6,深圳大学,应用数学,硕士 2002/9 – 2006/6,深圳大学,应用数学,学士 2011/5 – 2012/2,美国The Methodist Hospital Research Institute,口腔与颌面手术部门,助理研究员

研究领域

人工智能,机器学习,模式识别

科研项目与论文: 主持国家自然科学基金2项 [1] 数学天元,非参数核方法的样本外扩展研究, 2016/1-2016/12 [2] 青年基金,基于数据集相似性的分类算法自动选择研究,2017/1-2019/12

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

已发表论文40多篇,代表作如下 [1] Binbin Pan, Huaiqin Dong, Wen-Sheng Chen, Chen Xu. Semiparametric Clustering: A Robust Alternative to Parametric Clustering. IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 9, pp. 2583-2597, 2019. (大类一区,小类一区) [2] Binbin Pan, Wen-Sheng Chen, Bo Chen, Chen Xu, Jianhuang Lai. Out-of-sample extensions for non-parametric kernel methods. IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 2, pp. 334-345, 2017. (大类一区,小类一区) [3] Binbin Pan, Wen-Sheng Chen, Chen Xu, Bo Chen. A novel framework for learning geometry-aware kernels. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 5, pp. 939-951, 2016. (大类一区,小类一区) [4] Binbin Pan, Wen-Sheng Chen*, Bo Chen, Chen Xu. Efficient Learning of Supervised Kernels with a Graph-Based Loss Function. Information Sciences, vol. 370-371, pp. 50-62, 2016. (大类二区,小类一区) [5] Binbin Pan, Jianhuang Lai*, Lixin Shen. Ideal regularization for learning kernels from labels. Neural Networks, vol. 56, pp. 22-34, 2014. (大类二区,小类二区) [6] Binbin Pan, Jianhuang Lai*, Wen-Sheng Chen. Nonlinear nonnegative matrix factorization based on Mercer kernel construction. Pattern Recognition, vol. 44, no. 10-11, pp. 2800-2810, 2011. (大类二区,小类二区)

推荐链接
down
wechat
bug