近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Hu Liuping, Ou Zujun, Li Hongyi*, Construction of four-level and mixed-level designs with zero Lee discrepancy, Metrika, 2019, Doi: 10.1007/s00184-019-00720-x (SCI收录) [PDF]
Hu Liuping, Li Hongyi, Ou Zujun*, Constructing optimal four-level designs via Gray map code, Metrika, 2019, 82(5): 573-587 (SCI收录) [PDF]
Ou Zujun, Zhang Minghui, Qin Hong*, Tripling of fractional factorial designs. Journal of Statistical Planning and Inference, 2019, 199: 151-159 (SCI收录) [PDF]
Hu Liuping, Chatterjee Kashinath, Liu Jiaqi, Ou Zujun*, New Lower bound for Lee discrepancy of asymmetrical factorials, Statistical Papers, 2018, Doi: 10.1007/s00362-018-0998-9 (SCI收录) [PDF]
Liu Jiaqi, Ou Zujun*, Hu Liuping, Wang Kang, Lee discrepancy on mixed two- and three-level uniform augmented designs, Communications in Statistics-Theory and Methods, 2019, 48(10): 2409-2424 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Optimal foldover plans of asymmetric factorials with minimum wrap-around L2-discrepancy, Statistical Papers, 2019, 60(5): 1699-1716 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Chatterjee Kashinath, Some new lower bounds to various discrepancies on combined designs, Communications in Statistics-Theory and Methods, 2017, 46(7): 3244-3254 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Analytic connections between a double design and its original design in terms of different optimality criteria, Communications in Statistics-Theory and Methods, 2017, 46(15): 7630-7641 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Cai Xu, Optimal foldover plans of three-level designs with minimum wrap-around L2-discrepancy, Science China Mathematics, 2015, 58(7): 1537-1548 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Li Hongyi, Some lower bounds of centered L2-discrepancy of 2s-k designs and their complementary designs, Statistical Papers, 2015, 56(4): 969-979 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Cai Xu, A lower bound for the wrap-around L2-discrepancy on combined designs of mixed two- and three-level factorials, Communications in Statistics-Theory and Methods, 2014, 43(10-12): 2274-2285 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Cai Xu, Partially replicated two-level fractional factorial designs via semifoldover, Journal of Statistical Planning and Inference, 2013, 143(4): 809-817(SCI收录) [PDF]
Ou Zujun, Qin Hong*, Li Hongyi, Connections among different criteria for optimal factor assignments, Communications in Statistics-Theory and Methods, 2012, 41(2): 241-250 (SCI收录) [PDF]
Ou Zujun , Chatterjee Kashinath, Qin Hong*, Lower bounds of various discrepancies on combined designs, Metrika, 2011, 74(1): 109-119 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Li Hongyi, Optimal blocking and foldover plans for non-regular two-level designs, Journal of Statistical Planning and Inference, 2011, 141(5): 1635-1645 (SCI收录) [PDF]
Ou Zujun, Qin Hong*, Some applications of indicator function in two-level factorial designs, Statistics & Probability Letters, 2010, 80(1): 19-25 (SCI收录) [PDF]
Li Hongyi, Li Qisheng, Ou Zujun*, Construction of Sudoku designs and Sudoku-based uniform designs, Statistics & Probability Letters,2014, 89: 51-57 (SCI收录) [PDF]
Chatterjee Kashinath, Ou Zujun, Phoa Frederick Kin Hing, Qin Hong*, Uniform four-level designs from two-level designs: a new look, Statistica Sinica, 2017, 27(1): 171-186 (SCI收录) [PDF]
Tian Guoliang*, Ou Zujun, Zhang Chi, Ng Kai Wang, G and related distributions with applications in reliability growth analysis, Statistics and Its Interface, 2016, 9(3): 315-332 (SCI收录) [PDF]
Qin Hong*, Chatterjee Kashinath, Ou Zujun, A lower bound for the centered L2-discrepancy on combined designs under the asymmetric factorials, Statistics, 2013, 47(5): 992-1002 (SCI收录) [PDF]
Lei Yiju, Ou Zujun, Zou Na, Qin Hong, A note on lower bound of centered L2-discrepancy on combined designs, Acta Mathematica Sinica (English Series), 2012, 28(4): 793-800 (SCI收录) [PDF]
雷轶菊, 欧祖军,李洪毅*, 均匀的三水平扩展设计, 应用数学学报,2018, 41(5): 676-688 (CSCD收录,B类) [PDF]
雷轶菊, 欧祖军*, 三水平U型设计在对称化L2-偏差下的下界, 应用数学学报,2018, 41(1): 138-144 (CSCD收录,B类) [PDF]
覃红, 欧祖军*,Chatterjee Kashinath,四水平计算机试验设计的构造, 中国科学:数学,2017, 47(9): 1089-1100 (CSCD收录,B类) [PDF]
雷轶菊, 欧祖军*, 扩大设计的中心化L2-偏差的新下界, 应用数学学报,2017, 40(6): 841-848 (CSCD收录,B类) [PDF]
雷轶菊,欧祖军,覃红, (sr)× sn正规部分因子设计折叠反转的性质, 数学物理学报,2011, 31A(4): 978-982 (CSCD收录,C类) [PDF]
李洪毅,欧祖军*,黎奇升, 混水平饱和正交设计在广义离散偏差下的均匀性, 福州大学学报(自然科学版) , 2016, 44(3): 368-374(CSCD收录,E类)
李洪毅,欧祖军*,黎奇升, 二水平因子设计混合偏差新的下界, 东北师大学报(自然科学版),2016, 48(1): 34-38(CSCD收录,E类)
李洪毅,欧祖军*,黎奇升, 二三混水平设计离散偏差新的下界, 福州大学学报(自然科学版), 2016, 44(3): 375-378(CSCD收录,E类)
李洪毅,黎奇升,欧祖军*, 互补设计在广义离散偏差下的均匀性, 华中师范大学学报(自然科学版), 2015, 49(4): 492-496(CSCD收录,E类)