当前位置: X-MOL首页全球导师 国内导师 › 马丁

个人简介

Ding Ma was born in Sichuan, a southwest province in China. He read chemistry in Sichuan University (1996), and obtained his Ph.D in 2001 from the State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics (2001, Prof. Xinhe Bao & Prof. Yide Xu). After his postdoctoral stay in Oxford University (Prof. M.L.H. Green) and University of Bristol (Prof. Stephen Mann), he started his research career in Dalian Institute of Chemical Physics as associate professor (2005). He was promoted as a full professor in 2007 and moved to Peking University in 2009. His research interests are heterogeneous catalysis, especially those related with energy issues, including C1 chemistry (methane, CO2 and syngas conversion), new reaction route for sustainable chemistry and the development of in-situ spectroscopic method that can be operated at working reaction condition to study reaction mechanism. He is the Advisory Member for various journals including Journal of Energy Chemistry, Science Bulletin, Journal of Catalysis, Catalysis Science & Technology, ACS Central Science, Joule, Applications in Energy and Combustion Science, Innovation, Discover Chemical Engineering. He is Associate Editor for ACS Catalysis, Chinese Journal of Chemistry and National Science Open, and have been elected as the Fellow of the Royal Society of Chemistry in 2016, and the Fellow of Chinese Chemical Society in 2022.

研究领域

tivation and Hydrogen Production Water is the biggest pool in terms of hydrogen supply for the future. Polymer electrolyte membrane fuel cells (PEMFC) and other applications that run on hydrogen are the most promising alternatives to meet the future needs for power supply in portable, residential and transportation applications. These applications rely on safe storage and transportation of hydrogen. Hydrogen stored in a chemical form as liquid organic compounds and released in-situ on demand through efficient catalytic processes at low temperature is highly desirable. For example, hydrogen could be stored in ammonia through ammonia synthesis process in hydrogen-abundant area, and transported and released through ammonia decomposition. Also, methanol, an inexpensive bulk chemical, can reform with water and produce three hydrogen molecules (CH3OH + H2O = 3H2 + CO2) with high gravimetric density of 18.8 wt%. We are working on those processes in our laboratory. Catalytic Upgrading/Degradation of Plastic Wastes The increasing use of polymer plastics and the accumulation have posed a huge threat to the environment. Transforming the plastic wastes into value-added chemicals is a promising way to recycle the carbon resources and to reach carbon neutrality. However, most of the demonstrated catalytic degradation/upgrading processes suffer from insufficient selectivity toward a specific product due to the stubborn structure and random fission of the polymer chains, especially for polyolefins. We aim at establishing novel catalytic processes (e.g., new reaction routes, new catalysts for high selectivity of specific products, new degradation reagent, etc.) to produce value-added chemicals from real-life plastics. While paving the road for these processes, the poisoning effect from the additives (e.g., plasticizer, stabilizer, antioxidant and chlorine-containing components) and the complexity of different polymer components in the plastic wastes are the major challenges we strive to break through. C1 Chemistry C1 chemistry is the most promising alternative to petroleum route for the production of fuels and basic chemical raw materials. Through C-O and C-H bond activation and successive C-C, C-O and C-H bond formation, one carbon-atom molecules, such as CO, CO2 and CH4, can reassemble to large molecular weight hydrocarbons, oxygenates, and other important chemicals on designated catalysts. We strive to find new catalytic systems for existing C1 transformation processes, develop new reaction paths for more efficient utilization of those C1 resources, and reveal their reaction mechanism by various characterization methods under working reaction conditions. Operando Reaction Mechanism and Kinetics Although heterogeneous catalysis as a phenomenon has been studied for over two hundred years, attempts to describe the reactions at the molecular level have faced significant challenges. A predominant barrier for researchers to enhance their knowledge in this area is the lack of powerful tools that can track the catalytic reactions under working conditions, especially for those occurring at elevated pressure and/or temperature. It is worth noting that some sophisticated in-situ methods have been developed in order to identify the working catalyst phases (active centers) responsible for catalytic activity or detect the reaction intermediates and eventually to reveal how the reactants are converted into the products (reaction mechanism). State-of-the-art technologies even enable the resolution of the spatiotemporal gradients in heterogeneous catalysts, and in some cases, imaging the heterogeneity of catalytic active components even at the nanometer scale. However, for high-pressure reactions, such as ammonia synthesis and Fischer-Tropsch synthesis (FTS), limited approaches are available for direct observation of the reaction process under working conditions. We designed and manufactured a series of operando apparatuses for solid-state-NMR, X-ray adsorption, X-ray diffraction as well as Steady-State Isotopic Transient Kinetic Analysis (SSITKA) that could work at elevated pressure and temperature. Coupling them with on-line Mass Spectroscopy, GC-Mass, and even high pressure transient technology, we are able to provide insights into mechanistic understanding of chemical reactivity of different complex reaction systems. Those methods have also been used to monitor the catalyst fabrication process, which is key for the controlled construction of catalytic-active materials. Catalyst Fabrication The production of most industrially important chemicals involves catalysis. The chemical compositions, particle sizes, morphology, porosity, exposed facets as well as defects and interfaces of the catalysts have significant effects on their catalytic performances. Therefore, catalyst design is the center-of-art of the scene. The right choice of the above mentioned measures for catalyst will confer it designated electronic and geometrical structures and therefore designated catalytic properties. Our mission is to discover the relationship between the catalyst structure and its catalytic performance. Under this consideration, we focus our research activities on the controllable synthesis of well-defined catalytic materials, and the investigation of their catalytic performances. Meanwhile, we work closely with our collaborators on materials research to construct the most active and selective catalysts, especially for low temperature applications.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Qin X. T., Zhang R. Q., Xu M., Xu Y., Zheng L. R., Li C. Y., Yu S. X., Yan J., Xie J. L., Wu G. H., Rong J. F.*, Wang M.*, Ma D.* Selective Hydrogenation of Phenylacetylene by Carbon Monoxide and Water CCS Chemistry, in press Jiao Y. C., Wang M.*, Ma D.* Catalytic Cracking of Polylactic Acid to Acrylic Acid Chinese Journal of Chemistry, in press Sun B., Zhang J., Wang M. L., Yu S. X., Xu Y., Tian S. H., Gao Z. R., Xiao D. Q., Liu G. S., Zhou W., Wang M.*, Ma D.* Valorization of waste biodegradable polyester for methyl methacrylate production Nature Sustainability, 2023, 6, 712-719 Wang M., Ma D.* Upcycling contaminated plastics Nature Sustainability, in press Ma D.* Hydrogen-carbon cycle:plastic waste transformation addressing resource challenge Nature Sustainability, invited Tian S. H., Li J. R., Xiao D. Q., Ma D.* Self-Enhanced Catalytic Activity of Pt/TiO2 via Electronic Metal-Support Interaction ACS Central Science, 2023, 9, 1, 7-9 Wang L. L., Wang H., Cheng R. F., Wang M. L., Cai X. B., Ren P. J., Xiao D. Q., Wang N., Wen X. D., Diao J. Y.*, Wang X. H.*, Liu H. Y.*, Ma D.* High-Density Coordinatively Unsaturated Zn Catalyst for Efficient Alkane Dehydrogenation Journal of the American Chemical Society, in revision Jin H. Q., Cao C. Y.*, Cui P. X., Zhao R. Q., Liu X. L., Yan J., Yu X. H.*, Ma D.*, Song W. G.* Sabatier Phenomenon in Hydrogenation Reactions Induced by Single-Atom Density Journal of the American Chemical Society, 2023, 145, 22, 12023-12032 Zhang Q., Peng M., Gao Z. R. Guo W. D., Sun Z. H., Zhao Y., Zhou W.*, Wang M., Mei B. B., Du X. L., Jiang Z., Sun W., Liu C., Zhu Y. F., Liu Y. M., He H. Y., Li Z. H.*, Ma D.*, Cao Y.* Nitrogen-Neighboured Single Cobalt Sites Enable Heterogeneous Oxidase-Type Catalysis Journal of the American Chemical Society, 2023, 145, 7, 4166-4176 Wang X. Y., Li D. D., Gao Z. R., Guo Y.*, Zhang H. B.*, Ma D.* The Nature of Interfacial Catalysis over Pt/NiAl2O4 for Hydrogen Production from Methanol Reforming Reaction Journal of the American Chemical Society, 2023, 145, 2, 905-918 Zhang X. C., Li A. W., Tang H. Y., Xu Y., Qin X. T., Jiang Z., Yu Q. L., Zhou W., Chen L. W., Wang M.*, Liu X.*, Ma D.* Aqueous-phase carbonate conversion to formate over supported non-noble metal catalysts Angew. Chem. -Int. Edit., in revision Li S., Liu Y. X., Feng K., Xu J. B., Lu C., Lin H. P.*, Feng Y., Li C. Y., Ma D.*, Zhong J.* High valence state sites as favorable reductive center for industrial water splitting Angew. Chem. -Int. Edit., in revision Mi R. L., Zeng L. Z., Wang M. L., Tian S. H., Yan J., Yu S. X., Wang M.*, Ma D.* Solvent-free Heterogeneous Catalytic Hydrogenation of Polyesters to Diols Angew. Chem. -Int. Edit., 2023, 62, e202304219 Zhang X., Xu Y., Liu Y., Niu L., Diao Y. N., Gao Z. R., Chen B. B., Xie J. L., Bi M. S., Wang M., Xiao D. Q., Ma D.*, Shi C.* A novel Ni-MoCxOy interfaccial catalyst for syngas production via the chemical looping dry reforming of methane Chem, 2023, 9, 1, 102-116 Chen X. W., Qin X. T., Jiao Y. Y., Peng M., Diao J. Y., Ren P. J., Li C. Y., Xiao D. Q., Wen X. D., Jiang Z., Wang N., Cai X. B.*, Liu H. Y.*, Ma D.* Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation Nature Communications, 2023, 14, 2588 Gao X. F., Zhu L., Yang F., Zhang L., Xu W. H., Zhou X., Huang Y. K., Song H. H., Lin L. L., Wen X. D.*, Ma D.*, Yao S. Y.* Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation Nature Communications, 2023, 14, 1478 Gua F. B., Qin X. T., Pang L., Zhang R., Peng M., Xu Y., Hong S., Xie J. L., Wang M., Han D. M., Xiao D. Q., Guo G. S., Wang X. Y.*, Wang Z. H.*, Ma D.* Acid-Promoted Selective Oxidation of Methane to Formic Acid over Dispersed Rhodium Catalysts under Mild Conditions ACS Catalysis, in press Jin H. Q., Cui P. X., Cao C. Y.*, Yu X. H.*, Zhao R. Q., Ma D., Song W. G.* Understanding the Density-Dependent Activity of Cu Single-Atom Catalyst in the Benzene Hydroxylation Reaction ACS Catalysis, 2023, 13, 2, 1316-1325 Cao Y. W., Peng Y., Cheng D. Y., Chen L., Shang C., Ma D.*, Liu Z. P.*, He L.* Room-temperature CO Oxidative Coupling for Oxamides Production over Interfacial Au/ZnO Catalysts ACS Catalysis, 2023, 13, 1, 735-743 Chen J. W., Jiao Y. Y., Qin X. T., Cai X. B., Wang M. L., Diao J. Y., Huang F., Li C. Y., Ren P. J., Wen X. D., Wang N., Rong J. F., Xiao D. Q.*, Liu H. Y.*, Ma D.* Atomically Dispersed Rh Enable Efficient Nitriles Hydrogenation to Secondary Amines: Size Effect and Metal-dependent Effect ACS Catalysis, 2023, 13, 13, 8354-8361 Shi X. W., Wang X., Jiang H. Q., Qin X. T., Li X. H., Sheng G., Yu C., Zheng L. R., Zhu C. Z., Zheng L. X., Mao L.*, Ma D.*, Zhu Y. H.*, Zheng H. J.* Activating surface sulfur atoms via subsurface engineering toward boosted photocatalytic water splitting Chem Catalysis, in press Xu Y. Z., Wang M. L., Xie Z. W., Tian D., Sheng G., Tang X., Li H. B., Wu Y. C., Song C. Q., Gao X. F., Yao S. Y., Ma D.*, Lin L. L.* Insights into the interfacial structure of Cu/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: Effects of Cu-supported nano-ZrO2 inverse interface Chemical Engineering Journal, 2023, 470, 144006 An H. Q., Li C. X., Lv Z. T., Wang Y. D., Zhang H. H., Zhao L. Z., Cheng R., Wang S. B., Zhu Q. J., Yin Z.*, Ma D.* Modulation of Hot Electrons via Interface Engineering of Au@ZnIn2S4/MXene for Efficient Photoelectrochemical Seawater Splitting under Visible Light The Journal of Physical Chemistry C, 2023, 127, 10515-10523 Gao W.*, Li Y. W., Xiao D. Q.*, Ma D.* Advances in photothermal conversion of carbon dioxide to solar fuels Journal of Energy Chemistry, 2023, 83, 62-78 Huang F., Peng M., Liu H. Y.*, Ma D.* Atomically Dispersed Metals on Nanodiamond-Derived Hybrid Materials for Heterogeneous Catalysis Accounts of Materials Research, 2023, 4, 3, 233-236 Li S. W., Lin L. L., Wang Z. H., Ma D.* Direct Utilization of Crude and Waste H2 via CO tolerant hydrogenation The Innovation, 2023, 4, 100353 Sun B., Ma D.* Catalytic recycling of polyesters via a binuclear catalyst Science China Chemistry, in press Yin Z. H., Zhang K., Ma N., Liu X., Yin Z.*, Wang H., Yang X., Wang Y., Qin X. T., Cheng D. Y., Zheng Y. M., Wang L. L., Li J. X.*,Xu Z. W., Tang N., Cheng B. W., Xiao D. Q., Ma D.* Catalytic Membrane Electrode with Co3O4 Nanoarrays for Simultaneous Recovery of Water and Hydrogen from Wastewater Science China Materials, 2023, 66, 651-663 He X. H., Zhang H., Zhang X. C., Zhang Y., He Q., Chen H. Y., Chen H. Y., Cheng Y. J., Peng M., Qin X. T., Ji H. B.*, Ma D.* Building up libraries and production line for single atom catalysts with precursor-atomization strategy Nature Communications, 2022, 13, 5721 Liu H. X., Li J. Y., Qin X. T., Ma C., Wang W. W., Xu K., Yan H., Xiao D. Q., Jia C. J.*, Fu Q.*, Ma D.* Ptn–Ov synergistic sites on MoOx/γ-Mo2N heterostructure for low-temperature reverse water–gas shift reaction Nature Communications, 2022, 13, 5800 Zhou X., Gao X. F., Liu M. J., Gao Z. R., Qin X. T., Xu W. H., Ye S. T., Zhou W. H., Fan H. A., Li J., Fan S. R., Yang L., Fu J., Xiao D. Q., Lin L. L.*, Ma D.*, Yao S. Y.* Photocatalytic Dehydrogenative C-C Coupling of Acetonitrile to Succinonitrile Nature Communications, 2022, 13, 4379 Wang Z. H., Dong C. Y., Tang X., Qin X. T., Liu X. W., Peng M., Xu Y., Song C. Q., Zhang J., Liang X., Dai S.*, Ma D.* CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen Nature Communications, 2022, 13, 4404 Cao R. C., Zhang M. Q., Hu C. Q., Xiao D. Q., Wang M.*, Ma D.* Catalytic Oxidation of Polystyrene to Aromatic Oxygenates over Graphitic Carbon Nitride Catalyst Nature Communications, 2022, 13, 4809 Zhao L. M., Qin X. T., Zhang X. R., Cai X. B., Huang F., Jia Z. M., Diao J. Y., Xiao D. Q., Jiang Z., Lu R. F., Wang N., Liu H. Y.*, Ma D.* A Magnetically Separable Pd Single-atom Catalyst for Efficient Selective Hydrogenation of Phenylacetylene Advanced Materials, 2022, 34, 2110455 Wang H. Y., Diao Y. N., Gao Z. R., Smith K. J., Guo X. W.*, Ma D.*, Shi C.* H2 production from methane reforming over molybdenum carbide catalysts: From surface properties and reaction mechanism to catalyst development ACS Catalysis, 2022, 12, 24, 15501-15528 Chen X. W., Peng M., Xiao D. Q., Liu H. Y.*, Ma D.* Fully Exposed Metal Clusters: Fabrication and Application in Alkanes Dehydrogenation ACS Catalysis, 2022, 12, 20, 12720-12743 Wang J. Y., Li X., Wang M. L., Zhang T., Chai X. Y., Lu J. L., Wang T. F.*, Zhao Y. X.*, Ma D.* Electrocatalytic Valorization of Polyethylene Terephthalate Plastic and CO2 for Simultaneous Production of Formic acid ACS Catalysis, 2022, 12, 11, 6722-6728 Guo J. Q., Peng M., Jia Z. M., Li C. Y., Liu H. Y., Zhang H. B.*, Ma D.* Kinetic Evidence of Most Abundant Surface Intermediates Variation over Ptn and Ptp: Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production-II ACS Catalysis, 2022, 12, 12, 7248-7261 Yang J. H., Peng M., Zhai D. D., Xiao D. Q., Shi Z. J.*, Yao S. Y.*, Ma D.* Fixation of N2 into Value-Added Organic Chemicals ACS Catalysis, 2022, 12, 5, 2898-2906 Peng M., Jia Z. M., Gao Z. R., Xu M., Cheng D. Y., Wang M., Li C. Y., Wang L. L., Cai X. B., Jiang Z., Jiang H.*, Wang N., Xiao D. Q., Liu H. Y.*, Ma D.* Anti-Sintering Pd1 Catalyst for Propane Direct Dehydrogenation with in-situ Active Sites Regeneration Ability ACS Catalysis, 2022, 12, 4, 2244-2252 Huang F., Peng M., Chen Y. L., Gao Z. R., Cai X. B., Xie J. L., Xiao D. Q., Jin L., Wang G. Q., Wen X. D., Wang N., Zhou W., Liu H. Y.*, Ma D.* Insight into the Activity of Atomically Dispersed Cu Catalysts for Semihydrogenation of Acetylene: Impact of Coordination Environments ACS Catalysis, 2022, 12, 1, 48–57 Jia Z. M., Peng M., Cai X. B., Chen Y. L., Chen X. W., Huang F., Zhao L. M., Diao J. Y., Wang M., Xiao D. Q., Wen X. D., Jiang Z., Liu H. Y.*, Ma D.* Fully Exposed Platinum Clusters on Nanodiamond/Graphene Hybrid for efficient low-temperature CO oxidation ACS Catalysis, 2022, 12, 15, 9602-9610 Meng F. C., Qin X. T., Yang L. N.*, Huang F., Diao J. Y., Cai X. B., Zhang D., Zhu P. B., Peng M., Wang N., Xiao D. Q., Xia L. X.*, Liu H. Y.*, Ma D.* Fully-Exposed Pd Cluster Catalyst: An Excellent Catalytic Antibacterial Nanomaterial Small, 2022, 18, 2203283 Liu Y., Chen Y., Gao Z. R., Zhang X., Zhang L. J., Wang M., Chen B. B., Diao Y. N., Li Y. L., Xiao D. Q., Wang X. P.*, Ma D.*, Shi C.* Embedding High Loading and Uniform Ni Nanoparticles into Silicalite-1 Zeolite for Dry Reforming of Methane Applied Catalysis B: Environmental, 2022, 307, 121202 Meng F. C., Peng M., Chen Y. L., Cai X. B., Huang F., Yang L. N.*, Liu X., Li T., Wen X. D., Wang N., Xiao D. Q., Xia L. X.*, Liu H. Y.*, Ma D.* Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications Applied Catalysis B: Environmental, 2022, 301, 120826 Song C. Q., Wang Z. H., Yin Z.*, Xiao D. Q.*, Ma D.* Principles and Applications of Photothermal Catalysis Chem Catalysis, 2022, 2, 1, 52-83 Zeng L. Z., Liu X. W., Ma D.* The rationalized correlation between selectivity and the surface ensemble site of the bimetallic catalyst Chem Catalysis, 2, 7, 1510-1512 Zhou W., Gao Z. R., Wang M.*, Wu G. H., Rong J. F.*, Ma D.* Direct conversion of isopropanol to C6+ branched compounds as high-octane gasoline blendstock Green Chemistry, 2022, 24, 5083-5087 Shang W. X., Qin B., Gao M. Y., Qin X. T., Chai Y. C., Wu G. J., Guan N. J., Ma D., Li L. D.* Efficient Heterogeneous Hydroformylation over Zeolite-encaged Isolated Rhodium Ions CCS Chemistry, 2022, 5, 1526-1539 Zhao E., Li M. M., Xu B. B., Wang X. L., Jing Y., Ma D., Mitchell S., Pérez-Ramírez J., Chen Z. P.* Transfer Hydrogenation with a Carbon-Nitride-Supported Palladium Single-Atom Photocatalyst and Water as a Proton Source Angew. Chem. -Int. Edit., 2022, 61, e202207410 Yang Y. Y., Chai Z. G., Qin X. T., Zhang Z. Z., Muhetaer A., Wang C., Huang H. L., Yang C. R., Ma D., Li Q., Xu D. S.* Light-Induced Redox Looping of a Rhodium/CexWO3 Photocatalyst for Highly Active and Robust Dry Reforming of Methane Angew. Chem. -Int. Edit., 2022, 61, e202200567 Gao Z. R., Li A. W., Ma D.*, Zhou W.* Electron Energy Loss Spectroscopy for Single Atom Catalysis Topics in Catalysis, 2022, 65, 1609-1619 Li J. H., Wang L. L.*, He H. J., Chen Y. Q., Gao Z. R., Ma N., Wang B., Zheng L. L., Li R. L., Wei Y. J., Xu J. Q., Xu Y., Cheng B. W., Yin Z.*, Ma D.* Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction Nano Research, 2022, 15, 4986-4995 Li S. P., Dong M. H., Peng M., Mei Q. Q., Wang Y. Y., Yang J. J., Yang Y. D., Chen B. F., Liu S. L., Xiao D. Q., Liu H. Z.*, Ma D.*, Han B. X.* Crystal-Phase-Engineering of PdCu Nanoalloys Facilitates Selective Hydrodeoxygenation at Room Temperature The Innovation, 2022, 3, 100189 Gao X. F., Huang Y. K., Xu W. H., Zhou X., Yao S. Y.*, Ma D.* Oxidative Dehydrogenation of Propane to Propene over Boron-based Catalysts Progress in Chemical Engineering, 2022, 3, 41 Zhang W. J., Ma D.*, Javier Pérez-Ramírez*, Chen Z. P.* Recent Progress in Materials Exploration for Thermocatalytic, Photocatalytic, and Integrated Photothermocatalytic CO2-to-Fuel Conversion Adv. Energy Sustainability Res., 2022, 3, 2100169 Ge Y. Z., Qin X. T., Li A. W., Deng Y. C., Lin L. L., Zhang M. T., Yu Q. L., Li S. W., Peng M., Xu Y., Zhao X. Y., Xu M. Q., Zhou W.*, Yao S. Y.*, Ma D.* Maximizing the Synergistic Effect of CoNi Catalyst on α-MoC for Robust Hydrogen Production Journal of the American Chemical Society, 2021, 143, 2, 628-633 Lin L. L., Ge Y. Z., Zhang H. B., Wang M., Xiao D. Q., Ma D.* Heterogeneous Catalysis in Water JACS Au, 2021, 1, 11, 1834-1848 Zhai P., Li Y. W., Wang M.*, Liu J. J., Cao Z., Zhang J., Xu Y., Liu X. W., Li W. Y., Zhu Q. J.*, Xiao D. Q., Wen X. D.*, Ma D.* Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route Chem, 2021, 7, 3027-3051 Wang M., Xiao D. Q., Ma D.* Direct Observation of the Relationship of Mo Sites and Acidic Proton in Methane Dehydroaromatization reaction via NMR Spectroscopy Chem, 2021, 7, 1424-1427 Peng M. Xiao D. Q., Ma D.* An Electrified Insight into the Thermocatalysis in Water Joule, 2021, 5, 11, 2768-2771 Lin L. L., Liu J. J., Liu X.*, Gao Z. R., Ning R., Yao S. Y., Zhang F., Wang M. L., Liu C., Han L. L., Yang F., Zhang S., Wen X. D., Sanjaya, Wu Y. C., Li X. N., Jose A. Rodriguez*, Ma D.* Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction Nature Communications, 2021, 12, 6978 Liu Z. B., Huang F., Peng M., Chen Y. L., Cai X. B., Wang L. L., Hu Z. N., Wen X. D., Wang N., Xiao D. Q., Jiang H., Sun H. B.*, Liu H. Y.*, Ma D.* Tuning the selectivity of catalytic nitriles hydrogenation reaction by structure regulation in atomically dispersed Pd catalysts Nature Communications, 2021, 12, 6194 Chen X. W., Peng M., Cai X. B., Chen Y. L., Jia Z. M., Deng Y. C., Mei B. B., Jiang Z., Xiao D. Q., Wen X. D., Wang N.*, Liu H. Y.*, Ma D.* Regulating Coordination Number in Atomically Dispersed Pt Species on Defect-Rich Graphene for n-Butane Dehydrogenation Reaction Nature Communications, 2021, 12, 2664 Wu X. Y., Zhang Q., Li W. F., Qiao B. T.*, Ma D.*, Wang S. L.* Atomic-Scale Pd on 2D Titania Sheets for Selective Oxidation of Methane to Methanol ACS catalysis, 2021, 11, 22, 14038-14046 Wang Y. R., Ma J. M. Wang X. Y., Zhang Z. S., Zhao J. H., Yan J., Du Y. P.*, Zhang H. B.*, Ma D.* Complete CO Oxidation by O2 and H2O over Pt–CeO2−δ/MgO Following Langmuir–Hinshelwood and Mars–van Krevelen Mechanisms, Respectively ACS Catalysis, 2021, 11, 19, 11820–11830 Wang L. L., Diao J. Y., Peng M., Chen Y. L., Cai X. B., Deng Y. C., Huang F., Qin X. T., Xiao D. Q., Jiang Z., Wang N., Sun T., Wen X. D.*, Liu H. Y.*, Ma D.* Cooperative Sites in Fully Exposed Pd Clusters for Low-Temperature Direct Dehydrogenation Reaction ACS Catalysis, 2021, 11, 18, 11469-11477 Liu F. Y., Ma Z. Y., Deng Y. C., Wang M., Zhou P., Liu W., Guo S. J., Tong M. P.*, Ma D.* Tunable covalent organic frameworks with different heterocyclic nitrogen location for efficient Cr(VI) reduction, Escherichia coli disinfection and paracetamol degradation under visible light irradiation Environmental Science & Technology, 2021, 55, 8, 5371–5381 Liu X. W., Ma D.* Neotype strong metal-support interactions: CO2-induced MgO migration on gold nanoparticles Chem Catalysis, 2021, 1, 29-31 Wu C. Y., Cheng D. Y., Wang M., Ma D.* Understanding and Application of Strong Metal-Support Interactions in Conversion of CO2 to Methanol: A Review Energy & Fuels, 2021, 35, 23, 19012-19023 Zhuang Q., Ma N., Yin Z. H., Yang X., Yin Z.*, Gao J., Xu Y., Gao Z. R., Wang H., Kang J. L., Xiao D. Q., Li J. X.*, Li X. F., Ma D.* Rich Surface Oxygen Vacancies of MnO2 for Enhancing Electrocatalytic Oxygen Reduction and Oxygen Evolution Reactions Advanced Energy and Sustainability Research, 2021, 2100030 Yao S. Y.*, Sun H. L., Ma D.* The in-situ XAS study on the formation of Pd nanoparticles via thermal decomposition of Palladium (II) Acetate in hydroxyl functionalized ionic liquids J. Phys. D: Appl. Phys., 2021, 54, 144001-144009 Deng X., Qin B., Liu R. Z., Qin X. T., Dai W. L., Wu G. J., Guan N. J., Ma D., Li L. D.* Zeolite-Encaged Isolated Platinum Ions Enable Heterolytic Dihydrogen Activation and Selective Hydrogenations Journal of the American Chemical Society, 2021, 143, 49, 20898-20906

推荐链接
down
wechat
bug