个人简介
2006-2009,博士研究生,南京大学;
2002-2005,硕士研究生,南京大学;
1996-2000,苏州铁道师范学院,本科。
工作经历
2011-2013,博士后,复旦大学; 2000- ,苏州科技学院,教师 2016.3-2016.9,访问学者,早稻田大学 社会兼职:国家自然科学基金评议人 获得荣誉:省“青蓝工程”培养对象;华人数学家大会优秀硕士论文银奖
研究领域
主要研究领域:哈密尔顿系统的动力学不稳定性;弱KAM理论 学术成就:本人一直从事高维哈密尔顿系统里不稳定性的研究,在与程崇庆老师的工作中,我们得到了先验双曲自治哈密尔顿系统里连接轨道的通有存在性,并研究了一类经典力学系统(先验双曲情形)里从任意有限值趋于无穷的无界轨道的通有存在性
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] X. Li, X.J. Cui, Plateau of α-function and c-minimal homoclinic Sciences in China, series A-Mathematics 49(2006),922-931.
[2] X.J. Cui, X. Li, On M-semi-static homoclinic orbits,J.Math. Ana. Appl.,331(2007),947-957.
[3] X. Li, On c-equivalence,Sciences in China, series A-Mathematics, 52(2009), 2389-2396.
[4] X.Li, C.Q.Cheng, Connecting orbits of autonomous Lagrangian systems,Nonlinearity, 23(2010), 119-141.
[5] C.Q.Cheng, X.Li, Variational construction of unbounded orbits in Lagrangian systems,Sciences in China, series A-Mathematics, 53(2010), 617-624.
[6] X.Li, The convergence of the Lax-Oleinik semigroup for time-periodic Lagrangian, Sciences in China, series A-Mathematics, 57(2014), 343-352.
[7] X.Li,J.Yan, Diffusion orbits in autonomous Hamiltonian system, submitted,(2013),25 pages.
[8]X. Li, J. Yan, 弱KAM理论和Hamilton-Jacobi方程,《中国科学》,12(2014),,1286-1290.
[9] Q. Liu. X. Li* & D. Qian , An abstract theorem on the existence of periodic motions of non-autonomous Lagrange systems, J. Differential Equations, 261 (2016),5289-5305.
[10] Long-time asymptotic solutions of convex Hamilton-Jacobi equations depending on unknown functions, X. Li, Accepted by DCDS-A, (2017).