当前位置: X-MOL首页全球导师 国内导师 › 张毅

个人简介

张毅,男,1964年生,博士,教授,博士生导师。1983年毕业于东南大学力学专业,获理学学士学位;1988年毕业于东南大学一般力学专业,获工学硕士学位;1998年毕业于北京理工大学应用数学专业,获理学博士学位。2000年晋升教授,2010年晋升二级教授。2005年担任苏州科技大学硕士生导师,2011年兼任南京理工大学博士生导师。《苏州科技大学学报(自然科学版)》编委会主任。曾担任苏州科技大学副校长(2006-2017)。兼任中国交叉科学学会副理事长,第九届中国力学学会动力学与控制专业委员会委员、分析力学专业组副组长,江苏省力学学会副理事长,苏州市力学学会理事长等。曾担任教育部首届高等学校力学教学指导委员会非力学类专业力学基础课程教学指导分委员会委员。曾被授予江苏省劳动模范、江苏省师德模范、苏州市劳动模范、苏州市十大杰出青年等荣誉称号。

研究领域

长期从事动力学与控制、应用数学等领域的教学和科研工作。近期主要研究领域和兴趣有:分数阶变分问题与对称性;时间尺度上变分问题与对称性;分析动力学;Birkhoff系统动力学;非完整系统动力学等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Yi Zhang*. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. International Journal of Non-Linear Mechanics, 2018, 101: 36-43. [2] Yi Zhang*, Xue-Ping Wang. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. International Journal of Non-Linear Mechanics, 2018, 105: 165-172. [3] Yi Zhang*, Xue Tian. Conservation laws for Birkhoffian systems of Herglotz type. Chinese Physics B, 2018, 27(9): 090502. [4] Chuan-Jing Song, Yi Zhang*. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fractional Calculus & Applied Analysis, 2018, 21(2): 509-526. [5] Xue Tian, Yi Zhang*. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mechanica, 2018, 229(9): 3601-3611. [6] Yi Zhang*. Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem. Acta Mechanica, 2017, 228(4): 1481-1492. [7] 张毅*. Caputo导数下分数阶Birkhoff系统的准对称性与分数阶Noether定理. 力学学报, 2017, 49(1): 693-702. [8] Yi Zhang*, Xiao-San Zhou. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dynamics, 2016, 84(4): 1867-1876. [9] 张毅*. 相空间中非保守系统Herglotz广义变分原理及其Noether定理. 力学学报, 2016, 48(6): 1382-1389. [10] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 81-97. [11] Yi Zhang*, Xiang-Hua Zhai. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dynamics, 2015, 81(1-2): 469-480. [12] Yi Zhang*. Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems. Mathematical Problems in Engineering, 2015, Artical ID 790139. [13] Chuan-Jing Song, Yi Zhang*. Noether theorem for Birkhoffian systems on time scales. Journal of Mathematical Physics, 2015, 56(10): 102701. [14] Zi-Xuan Long, Yi Zhang*. Fractional Noether theorem based on extended exponentially fractional integral. International Journal of Theoretical Physics, 2014, 53(3): 841-855. [15] Yan Zhou, Yi Zhang*. Noether’s theorem of a fractional Birkhoffian system within Riemann-Liouville derivatives. Chinese Physics B, 2014, 23(12): 124502. [16] Xiang-Hua Zhai, Yi Zhang*. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dynamics, 2014, 77(1-2): 73-86. [17] Yi Zhang*, Yan Zhou. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dynamics, 2013, 73(1-2): 783-793.

推荐链接
down
wechat
bug