个人简介
2014年7月毕业于上海大学数学系获理学博士学位。2014年8月至今年在苏州科技大学数理学院任教,讲师。美国数学会Mathematical Reviews评论员。
研究领域
主要研究领域为凸几何分析。在凸体对称度研究中,给出了n维等宽体Minkowski非对称度分布定理,证明了正则单形完备体是最不对称的等宽体
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] H.L. Jin, Electrostatic capacity and measure of asymmetry, Proceedings of A.M.S., DOI: https://doi.org./10.1090/proc/14623.
[2] H.L. Jin, The log-Minkowski measure of asymmetry for convex bodies, Geom. Dedicata,196 (2018), 27–34.
[3] X.Y. Zhou, H.L. Jin*, Critical chords of convex bodies of constant width, Wuhan Univ. J. Nat. Sci., 23 (2018), 461-464.
[4] P.Z. Guo, H.L. Jin*, Groemer-Wallen measure of asymmetry for Reuleaux Polygons, J. Geom. 108 (2017), 879–884.
[5] H.L. Jin, Asymmetry of Reuleaux Polygons, Beitr. Algebra Geom., 58(2017) , 311–317.
[6] H.L. Jin, S.F. Yuan, G.S. Leng, On the dual Orlicz mixed volumes, Chin. Ann. Math. Ser. B., 36(2015), no. 6, 1019-1026.
[7] S.F. Yuan, H.L Jin, G.S. Leng, Orlicz Geominimal surface areas, Math. Inequal. Appl., 18(2015), 353-362
[8] H.L. Jin, Asymmetry for convex bodies of revolution, Wuhan Univ. J. Nat. Sci., 20(2015), no.2, 97-100. DOI 10.1007/s11859-015-1065-1.
[9] 袁淑峰, 金海林, 一些几何不等式的等价性, 上海大学学报(自然科学版), 25(2015). DOI: 10.3969/j.issn.1007-2861.2014.01.043
[10] H.L. Jin, G.S. Leng, Q. Guo, Mixed volumes and measures of asymmetry, Acta Math. Sin. ( Engl. Ser.), 30(2014), 1905-1916.
[11] H.L. Jin, Q. Guo,The mean Minkowski measures for convex bodies of constant width, Taiwan. J. Math., 18(2014), 1283-1291.
[12] H.L. Jin, S. F. Yuan, A sharp Rogers-Shephard type inequality for Orlicz-difference body of planar convex bodies, Proc. Indian Acad. Sci. (Math. Sci.), 124(2014), no. 4, 573-580.
[13] D.M. Xi, H.L Jin, G.S. Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math., 260(2014), 350-374.
[14] H.L. Jin, On the 1-measure of asymmetry for convex bodies of constant width, Beitr. Algebra Geom. 55(2014), no. 1, 201-206.
[15] H.L. Jin, G.S. Leng, Q. Guo, Orlicz metrics of convex bodies, Bol. Soc. Mat. Mex., 20(2014), 49-56.
[16] H.L. Jin, G. Leng, Q. Guo, Stability for the Minkowski measure of convex domains of constant width, J. Geom. 104(2013), 505-513.
[17] H.L. Jin, Q. Guo, A note on the extremal bodies of constant width for the Minkowski measure, Geom. Dedicata,164(2013), 227-229.
[18] H.L. Jin, Q. Guo, Asymmetry of convex bodies of constant width, Discrete Comput. Geom. 47 (2012), 415-423.
[19] Q. Guo, H.L. Jin, On a measure of asymmetry for Reuleaux polygons, J. Geom., 102 (2011), 73–79.
[20] H.L. Jin, Q. Guo, On the asymmetry for convex domains of constant width, Comm. Math. Res. 26(2010), 176-182.