近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Joint reconstruction and anomaly detection from compressive hyperspectral images using Mahalanobis distance-regularized tensor RPCA
Xu, Yang and Wu, Zebin and Chanussot, Jocelyn and Wei, Zhihui. IEEE Transactions on Geoscience and Remote Sensing: 2018 ,56(5) ,2919--2930
Low-rank decomposition and total variation regularization of hyperspectral video sequences
Xu, Yang and Wu, Zebin and Chanussot, Jocelyn and Dalla Mura, Mauro and Bertozzi, Andrea L and Wei, Zhihui. IEEE Transactions on Geoscience and Remote Sensing: 2018 ,56(3) ,1680--1694
Anomaly detection in hyperspectral images based on low-rank and sparse representation
Xu, Yang and Wu, Zebin and Li, Jun and Plaza, Antonio and Wei, Zhihui. IEEE Transactions on Geoscience and Remote Sensing: 2016 ,54(4) ,1990--2000
Spectral--spatial classification of hyperspectral image based on low-rank decomposition
Xu, Yang and Wu, Zebin and Wei, Zhihui. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing: 2015 ,8(6) ,2370--2380
A Target Detection Method Based on Low-Rank Regularized Least Squares Model for Hyperspectral Images.
Xu, Yang and Wu, Zebin and Xiao, Fu and Zhan, Tianming and Wei, Zhihui. IEEE Geosci. Remote Sensing Lett.: 2016,13(8) ,1129--1133
Joint sparse hyperspectral image classification based on adaptive spatial context
Xu, Yang and Wu, Zebin and Wei, Zhi-Hui. Journal of Applied Remote Sensing: 2014 ,8(1) ,083552
GAS plume detection in hyperspectral video sequence using low rank representation
Xu, Yang and Wu, Zebin and Wei, Zhihui and Dalla Mura, Mauro and Chanussot, Jocelyn and Bertozzi, Andrea. Image Processing (ICIP), 2016 IEEE International Conference on: 2016 ,2221--2225
Hyperspectral image classification using multilayer superpixel graph and loopy belief propagation
Zhan, Tianming and Xu, Yang and Sun, Le and Wu, Zebin and Zhan, Yongzhao. Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International: 2015 ,1690--1693
A novel hyperspectral image anomaly detection method based on low rank representation
Xu, Yang and Wu, Zebin and Wei, Zhihui and Liu, Hongyi and Xu, Xiong. Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International: 2015 ,4444--4447
Markov random field with homogeneous areas priors for hyperspectral image classification
Xu, Yang and Wu, Zebin and Wei, Zhihui. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International: 2014 ,3426--3429
Homogeneous region based low rank representation in hidden field for hyperspectral classification
Sun, Le and Jeon, Byeungwoo and Zheng, Yuhui and Xu, Yang and Wu, Zebin. Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International: 2017 ,4758--4761
Multiple features fusion for hyperspectral image classification based on extreme learning machine
Liu, Wei and Wu, Zebin and Wei, Jie and Deng, Weishi and Xu, Yang and Du, Lu and Wei, Zhihui. Geoscience and Remote Sensing Symposium (IGARSS), 2017 IEEE International: 2017 ,3218--3221
Kernel low-rank representation for hyperspectral image classification
Du, Lu and Wu, Zebin and Xu, Yang and Liu, Wei and Wei, Zhihui. Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International: 2016 ,477--480