当前位置: X-MOL首页全球导师 国内导师 › 李连忠

个人简介

博士,教授,硕导。江南大学理学院大学数学部教师。多年来一直从事常微分方程、动力系统、偏微分方程等应用数学的教学和研究工作,已在国际国内学术刊物上发表学术论文30多篇,有10多篇被SCI检索收录。美国数学评论评论员,多家国内外杂志审稿人,主持和参与多项国家自然科学基金项目及省部级科研项目。 工作及研究经历 1999.07—2014.08,泰山学院数学与统计学院工作 2014.09—至 今, 江南大学理学院工作 2008.09—2011.06,曲阜师范大学数学科学学院,获博士学位 2012.09—2014.07,上海师范大学数理学院应用数学专业博士后

研究领域

常微分方程、动力系统、偏微分方程

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

L. Li*, M. Han, Y. liu, Existence and uniqueness of traveling wave front of a nonlinear singularly perturbed system of reaction-diffusion equations with a Heaviside step function[J]. J. Math. Anal. Appl. 410(2014) 202–212. L. Li*, M. Han, Some new dynamic Opial type inequalities and applications for second order integro-differential dynamic equations on time scales[J]. Appl. Math. Comput. 232 (2014) 542–547. L. Li*, M. Han, X. Xue and Y. liu, y- Stability of nonlinear Volterra integro-differential systems with time delay[J]. Abstract and Applied Analysis, (2013),1 -5. L. Li*, Generalized double integral inequalities and their applications in studying the stability of nonlinear integro-differential systems with time delay[J]. Journal of Dynamical and Control Systems, 19(2013):457–469. L. Li*, F. Meng, P. Ju. Some new integral inequalities and their applications in studying the stability of nonlinear integro-differential equations with time delay[J]. J. Math. Anal. Appl. 377(2011):853-862. L. Li*, F. Meng, L. He. Some generalized integral inequalities and their applications[J]. J. Math. Anal. Appl. 372(2010):339-349 . L. Li*, F. Meng, Zh. Zheng. Some New Oscillation Results For Linear Hamiltonian System[J]. Appl. Math. Comput. 208(2009): 219-224. L. Li*, F. Meng, Zh. Zheng. Oscillation Results Related to Integral Averaging Technique For Linear Hamiltonian Systems[J]. Dynamic Systems and Applications. 18(2009): 725-736. F. Meng, L. Li*, Y. Bai, y- stability of nonlinear Volterra integro-differential systems[J]. Dynamic Systems and Applications. 20(2011): 563-574. Y. Tian , Y. Cai , L. Li and T. Li, Some dynamic integral inequalities with mixed nonlinearities on time scales[J]. Journa lof Inequalities and Applications. ( 2015) 2015:12 L. Li*, F. Meng, Zh. Zheng. Oscillation results for higher even order nonlinear partial functional differential equations of neutral type[J]. Journal of Applied Mathematics and Computating. 35 (2011): 431-442 . Lianzhong Li *a, b , Maoan Han a , Yuanyuan Liu a , Peng Wang a, Some Opial Type Inequalities With Higher Order Delta Derivative on Time Scales[J]. Applied Mechanics and Materialsl. 432 (2013): 185-188 . L. Li, N. Li, Y. Liu and L. Zhang*, Existence and uniquess of a traveling wave front of a model equation in synaptically coupled neuronal networks[J]. Journal of Applied Analysis and Computation,3(2013): 145-167. L. Li*, F. Meng, New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments[J]. Advances in Pure Mathematics, 1(2011): 49-53. L. Li*, F. Meng, Zh. Zheng. Oscillation results related to integral averaging technique for even order neutral differential equations with deviating arguments[J]. Annals of Differential Equations. 26( 2010): 414-421. Y. Tang and L. Li, Oscillation Criteria for a Class of Certain Half-linear Emden-Fowler Functional Differential Equations of Neutral Type[J], Advances in Engineering Research, 110(2017):176-179. H. Dai and L. Li*, The (G’/G)-Expansion Method for the Sine-Gordon Equation, Sinh-Gordon Equation and Liouville Equaiton[J], Advances in Engineering Research, 110(2017):186-190. H. Dai and L. Li*, Solitary Wave Solutions to the Sharma-Tasso-Olver Equation and the Similar Hirota-Satsuma KdV System through the Mo dified Simple Equation Method[J], British Journal of Mathematics & Computer Science. 17(3) (2016): 1-10, H. Dai, L. Li*, Y. Wang and F. He, Symmetry Reductions, Dynamical Behavior and Exact Explicit Solutions to the Combined sinh-cosh-Gordon Equation[J], Advances in Mathematics (数学进展), 47(6)(2018). A. Sha and L. Li*, Backlund Transformation, Painleve Test and Exact Solutions for a Generalized Variable Coefficient mKdV Equation[J], Mathematica Applicata(应用数学), 2018, 31(4): 890-897.

推荐链接
down
wechat
bug