个人简介
龚荣芳,南京航空航天大学理学院,教授,硕士生导师。2009年6月于浙江大学数学学院计算数学专业获理学博士学位,2009年6月起任职于南京航空航天大学理学院数学系。研究方向为医学成像、图像处理、参数识别和最优控制等数学物理反问题的正则化理论与数值方法。先后主持完成国家自然科学基金青年基金1项、国家博士后基金1项、江苏省自然科学基金青年基金1项、江苏省博士后基金1项、江苏省中央高校基础研究基金青年创新基金3项,当前主持国家自然科学基金面上项目1项,参与国家自然科学基金面上项目1项。在Numerische Mathematik、Inverse Problems、Inverse problems and Imaging、Communications in Computational Physics等期刊上发表SCI论文近30篇。
教育经历
1999.9 - 2003.7 南昌大学 数学与应用数学 大学本科毕业 理学学士学位
2004.9 - 2006.6 武汉大学 计算数学 硕士研究生毕业 理学硕士学位
2006.9 - 2009.6 浙江大学 数学 博士研究生毕业 理学博士学位
工作经历
2014.5 - 2015.5 美国艾欧瓦大学 数学系 Visiting Scholar
2016.7 - 2016.9 瑞典厄勒布鲁大学 数学系 Visiting Scholar
2018.7 - 2018.10 澳大利亚国立大学 数学系 Research Fellow
2009.6 - 2012.5 南京航空航天大学 理学院 讲师
2012.5 - 2021.6 南京航空航天大学 理学院 副教授
2021.6 - 至今 南京航空航天大学 数学学院 教授
科研项目
[1] 基于静-动态耦合模型生物发光层析成像的适定性与正则化方法研究, 国家自然科学基金面上项目 (Grant No. 12071215), 2021.1-2024.12.
[2] 生物发光层析成像中抛物反源问题的理论与应用研究, 中央高校基础研究基金(Grant No. NS2018047), 2018.1-2020.6.
[3] 基于扩散近似方程光学成像反问题的重构模型和算法研究, 国家自然科学基金青年项目(Grant No. 11401304), 2015.1-2017.12.
[4] 光学成像反问题的重构算法和理论, 中央高校基础研究基金(Grant No. NS2014078), 2014.1-2016.6.
[5] 偏微分方程反源问题及在光学成像中的应用, 江苏省自然科学基金(Grant No. BK20130780), 2013.7-2016.6.
[6] 生物发光层析成像反问题的数值方法, 中央高校基础研究基金(Grant No. NS2012063), 2012.1-2013.12.
[7] 生物发光层析成像理论分析与数值仿真, 中国博士后科学基金 (Grant No. 20100471334), 2010.6-2011.6.
[8] 生物发光层析成像理论分析与数值仿真, 江苏省博士后研究基金(Grant No. 1001070C), 2010.9-2011.6
授课信息
高等数学Ⅱ(2) /2021-2022 /秋学期 /72课时 /0.0学分 /08101630
教学成果
龚荣芳*, 蒋建林,基本初等函数趋于0或无穷大的速度及其应用, 数学学习与研究,28:18-21,2020。
龚荣芳*, 多项式插值和最佳逼近简析及比较, 科教导刊: 电子版, 26: 198-200, 2020。
关于多元函数极值判定方法的教学思考,中国科教创新导刊,17:97-99,2011。
研究领域
医学成像、图像处理、参数识别和最优控制等数学物理反问题的正则化理论与数值方法。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Rongfang Gong*, Min Wang, A CCBM-based generalized GKB iterative regularizing algorithm for inverse Cauchy problems, Submitted.
[2] Qin Huang*, and Rongfang Gong, Ye Zhang, A new second order dynamic method for solving large-scale ill-posed linear system, submitted.
[3] Xiaoliang Cheng, Rongfang Gong and Weimin Han, On numerical approximation of optimal control for Stokes hemivariational inequalities, in book Deterministic and Stochastic Optimal Control and Inverse Problems, CSC Press: 61--76, 2021.
[4] Rongfang Gong and Qin Huang*, Solving severely ill-posed linear systems with time discretization based iterative regularization methods, Transactions of Nanjing University of Aeronautics and Astronautics, 37(6): 979-994, 2020.
[5] Rongfang Gong, Bernd Hofmann, and Ye Zhang*, A new class of accelerated regularization methods, with application to bioluminescence tomography, Inverse Problems, 36: 355013, 35pp, 2020.
[6] Ye Zhang and Rongfang Gong*, Second order asymptotical regularization methods for inverse problems in partial differential equations, Journal of Computational and Applied Mathematics, 375: 112798, 22p, 2020.
[7] Xuan Zheng, Xiaoliang Cheng, Rongfang Gong, A coupled complex boundary method for parameter identification in elliptic problems, International Journal of Computer Mathematics, 97: 998-1015, 2020.
[8] Rongfang Gong*, Peijun Yu, Qinian Jin, Xiaoliang Cheng and Weimin Han, Solving a nonlinear inverse Robin problem through a linear Cauchy problem, Applicable Analysis, 99(12): 2093-2114, 2020.
[9] Ye Zhang, Rongfang Gong, Marten Guliksson and Xiaoliang Cheng, A coupled complex boundary expanding compacts method for inverse source problems, Journal of Inverse and Ill-posed Problems, 27(1): 67-86, 2019.
[10] Ye Zhang, Rongfang Gong*, Xiaoliang Cheng and Marten Guliksson, A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations, Inverse Problems, 34(6): 065001, 31 pp, 2018.
[11] Rongfang Gong*,Xiaoliang Cheng and Weimin Han,A homotopy method for bioluminescence tomography, Inverse Problems in Sciences & Engineering, 26(3): 398--421, 2018.
[12] Xiaoliang Cheng, Guangliang Lin*, Ye Zhang, Rongfang Gong and Marten Guliksson, A modified coupled complex boundary method for an inverse chromatography problem, Journal of Inverse and Ill-posed Problems, 26(1): 1--17, 2017.
[13] Rongfang Gong*, Xiaoliang Cheng and Weimin Han, A coupled complex boundary method for an inverse conductivity problem with one measurement, Applicable Analysis, 96(6): 869--885, 2017.
[14] Rongfang Gong, Joseph Eichholz, Xiaoliang Cheng* and Weimin Han, Analysis of a numerical method for bioluminescence tomography governed by radiative transfer equation, Journal of Computational Mathematics, 34(6): 646--668, 2016.
[15] Xiaoliang Cheng and Rongfang Gong*, A coupled complex boundary method for the Cauchy problem, Inverse Problems in Sciences & Engineering, 24(9): 1510-1527, 2016.
[16] Rongfang Gong*, Xiaoliang Cheng and Weimin Han, A new coupled complex boundary method for bioluminescence tomography, Communications in Computational Physics, 19(1): 226--250, 2016.
[17] Xiaoliang Cheng, Rongfang Gong* and Weimin Han, A new Kohn-Vogelius type formulation for inverse source problems, Inverse Problems and Imaging, 9(4): 1051-1067, 2015.
[18] Rongfang Gong* and Xiaoliang Cheng, An optimal finite element error estimate for an inverse problem in multispectral bioluminescence tomography, IMA Journal of Applied Mathematics, 80 (1): 115--134, 2015.
[19] Rongfang Gong*, Xiaoliang Cheng and Weimin Han, A fast solver for an optimization problem associated in bioluminescence tomography, Journal of Computational and Applied Mathematics, 267: 228--243, 2014.
[20] Xiaoliang Cheng, Rongfang Gong*, Weimin Han and Xuan Zheng, A novel coupled complex boundary method for inverse source problems, Inverse Problems, 30(5): 055002, 20pp, 2014.