个人简介
叶国菊, 女,1965生,理学院数学系教授。哈尔滨工业大学理学博士,捷克科学院数学所、兰州大学数学系博士后。曾在新加坡国立大学、新加坡南洋理工大学、捷克科学院数学研究所、美国犹他州立大学做访问学者。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] G. Ye, W. Liu, The distributional Henstock-Kurzweil integral and applications. Monatsh. Math. 181 (2016), no. 4, 975-989.
[2] H. Zhou, G. Ye, W. Liu, O. Wang, The distributional Henstock-Kurzweil integral and measure differential equations. Bull. Iranian Math. Soc. 41 (2015), no. 2, 363–374.
[3] B. Liang, G. Ye, W. Liu, H. Wang, On second order nonlinear boundary value problems and the distributional Henstock-Kurzweil integral. Bound. Value Probl. 2015, 2015:73, 8 pp.
[4] W. Liu, T. An, G. Ye, On first-order periodic boundary value problems and distributional Henstock-Kurzweil integrals. Bound. Value Probl. 2014, 2014:54, 11 pp.
[5] S. Heikkila, G. Ye, Equations containing locally Henstock-Kurzweil integrable functions. Appl. Math. 57 (2012), no. 6, 569–580.
[6] W. Liu, G. Ye, Y. Wang, X. Zhou, On periodic solutions for first-order differential equations involving the distributional Henstock-Kurzweil integral. Bull. Aust. Math. Soc. 86 (2012), no. 2, 327–338.
[7] Y. Lu, G. Ye, Y. Wang, W. Liu, The Darboux problem involving the distributional Henstock-Kurzweil integral. Proc. Edinb. Math. Soc. 55 (2012), no. 1, 197–205.
[8] Q. Liu, G. Ye, Some problems on the convergence of distributional Denjoy integral. (Chinese) Acta Math. Sinica (Chin. Ser.) 54 (2011), no. 4, 659–664.
[9] S. Heikkila, G. Ye, Convergence and comparison results for Henstock-Kurzweil and McShane integrable vector-valued functions. Southeast Asian Bull. Math. 35 (2011), no. 3, 407–418.
[10] Y. Lu, G. Ye, W. Liu, Y. Wang, Existence of solutions of the wave equation involving the distributional Henstock-Kurzweil integral. Differential Integral Equations 24 (2011), no. 11-12, 1063–1071.
[11] G. Ye, X. Li, Existence of solutions of second order boundary value problems with integral boundary conditions and singularities. J. Inequal. Appl. 2010, Art. ID 807178, 13 pp.
[12] G. Ye, On Kurzweil-Henstock-Pettis and Kurzweil-Henstock integrals of Banach space-valued functions. Taiwanese J. Math. 14 (2010), no. 1, 213–222.
[13] X. Ding, G. Ye, W.-C. Yang, Estimates of the integral remainders in several numerical integral formulas using the Henstock-Kurzweil integral. J. Math. Inequal. (2009), no. 2, 243–256.
[14] G. Ye, On the Henstock-Kurzweil-Dunford and Kurzweil-Henstock-Pettis integrals. Rocky Mountain J. Math. 39 (2009), no. 4, 1233–1244.
[15] S. Carl, S. Heikkila, G. Ye, Order properties of spaces of non-absolutely integrable vector-valued functions and applications to differential equations. Differential Integral Equations 22 (2009), no. 1-2, 135–156.
[16] G. Ye, S. Schwabik, A negative answer to a problem of Fremlin and Mendoza. Acta Math. Sci. Ser. B Engl. Ed. 27 (2007), no. 4, 813–820.
[17] G. Ye, On Henstock-Kurzweil and McShane integrals of Banach space-valued functions. J. Math. Anal. Appl. 330 (2007), no. 2, 753–765.
[18] D. Zhao, G. Ye, C-integral and Denjoy-C integral. Commun. Korean Math. Soc. 22 (2007), no. 1, 27–39.
[19] G. Ye, Some characterizations of the primitive of strong Henstock-Kurzweil integrable functions. Math. Bohem. 131 (2006), no. 3, 279–290
[20] G. Ye, P.-Y. Lee, A Riemann-type definition for the double Denjoy integral of Chelidze and Djvarsheishvili. Math. Bohem. 128 (2003), no. 2, 113–119.
[21] G. Ye, S. Schwabik, The McShane and the Pettis integral of Banach space-valued functions defined on Rm. Illinois J. Math. 46 (2002), no. 4, 1125–1144.
[22] G. Ye, S. Schwabik, The McShane and the weak McShane integrals of Banach space-valued functions defined on Rm. Math. Notes (Miskolc) 2 (2001), no. 2, 127–136.
[23] S. Schwabik, G. Ye, On the strong McShane integral of functions with values in a Banach space. Czechoslovak Math. J. 51(126) (2001), no. 4, 819–828.