近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Abdul, G., Wang, P., Zhang, D*., Li, H., 2015. Adsorption of diethyl phthalate on carbon nanotubes: pH dependence and thermodynamics. Environmental Engineering Science 32, 103-110.
[2] Chen, J., Wang, P., Cao, Y., Guo, B., Zhang, D*., 2016. Impact of pyrolytic temperature and acid wash on adsorption kinetics of carbamazepine on biochar. Environmental Chemistry 35, 1461-1467.
[3] Chen, J., Zhang, D*., Wu, M., Wang, P., 2014. Comparison of oxidation resistance of two biochars. Environmental Chemistry 33, 941-946.
[4] Chen, J., Zhang, D*., Wu, M., Wang, P., 2014. Elemental composition and thermal stability of two different biochars. Environmental Chemistry 33, 417-422.
[5] Chen, J., Zhang, D*., Zhang, H., Ghosh, S., Pan, B., 2017. Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Science of the Total Environment 579, 598-605.
[6] Li, H., Cao, Y., Zhang, D*., Pan, B., 2018. pH-dependent KOW provides new insights in understanding the adsorption mechanism of ionizable organic chemicals on carbonaceous materials. Science of the Total Environment 618, 269-275.
[7] Liang, N., Zhang, D*., Wei, C., 2015. The new applications of NMR technology in the field of characterization of surface properties of the material. Spectroscopy and Spectral Analysis 35, 497-501.
[8] Liang, N., Zhang, D*., Wei, C., Li, H., Ghosh, S., Cao, Y., Guo, B., 2015. Comparative adsorption of phenanthrene, bisphenol A, and sulfamethoxazole on humic acid-iron oxide nanoparticle complexes. Environmental Engineering Science 32, 703-712.
[9] Peng, H.., Zhang, D*., Li, H., Wang, C., Pan, B., 2014. Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters. Journal of Zhejiang University-Science A 15, 606-617.
[10] Wang, C., Ma, L., Liu, B., Zhang, D*., Pan, B., 2017. Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid. Environmental Science and Pollution research 24, 23834-23842.
[11] Wang, P., Zhang, D*., Zhang, H., Ghosh, S., 2017. Influence of natural organic matter on environmental behavior of carbon nanotubes:A review. Materials Review 31, 131-135,148.
[12] Wang, P., Zhang, D*., Zhang, H., Li, H., Ghosh, S., Pan, B., 2017. Impact of concentration and species of sulfamethoxazole and ofloxacin on their adsorption kinetics on sediments. Chemosphere 175, 123-129.
[13] Wei, C., Zhang, H., Zhang, D*., Yang, X., 2017. Suspension of carbon nanotubes in natural humic acid water. New Carbon Materials 32, 252-257.
[14] Wei, M., Zhang, H., Dong, W., Boonmee, S., Zhang, D*., 2018 Introducing Dictyochaeta aquatica sp. nov. and two new species of Chloridium (Chaetosphaeriaceae , Sordariomycetes) from aquatic habitats. Phytotaxa 362, 187-199.
[15] Yang, X., Zhang, D*., Li, H., Wu, M., 2014. Effect of tannic acid and gallic acid on suspension of carbon nanotubes. Environmental Chemistry 33, 123-128.
[16] Zhang, D., Pan, B., Cook, R.L., Xing, B., 2015. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures. Environmental Pollution 196, 292-299.
[17] Zhang, D., Pan, B., Wu, M., Wang, B., Zhang, H., Peng, H., Wu, D., Ning, P., 2011. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions. Environmental Pollution 159, 2616-2621.
[18] Zhang, D., Pan, B., Wu, M., Zhang, H., Peng, H., Ning, P., Xing, B., 2012. Cosorption of organic chemicals with different properties: Their shared and different sorption sites. Environmental Pollution 160, 178-184.
[19] Zhang, D., Pan, B., Zhang, H., Ning, P., Xing, B., 2010. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environmental Science & Technology 44, 3806-3811.
[20] Zhang, D., Wu, M., Li, H., Liu, J., Wang, H., Peng, H., Ning, P., Pan, B., 2012. Effect of organic carbon on sulfamethoxazole sorption on soil. Environmental Chemistry 31, 1238-1243.