当前位置: X-MOL首页全球导师 国内导师 › 高婷

个人简介

学习经历 1999.9-2003.7 东北师范大学计算机学院 本科 2003.9-2006.7 东北师范大学计算机学院 计算机应用技术 硕士 2006.9-2009.7 东北师范大学化学学院 博士 工作简历 2009.10-现在 东北师范大学信息科学与技术学院 讲师 2019年1-现在 东北师范大学信息科学与技术学院 外事秘书 2010.4-2013.12 东北师范大学生命科学学院 博士后流动站 访学经历 2016.9-2017.9 在美国佛罗里达国际大学做访问学者 2011.9-2012.1 在南开大学做教学访问学者 获奖情况: 2019年吉林省首届说课大赛一等奖 2017-12-31 吉林省自然科学学术成果奖二等奖 指导学生获得ACM国家级二等奖2项 指导学生获得ACM东北地区级一等奖1项 指导学生获得ACM省级特等奖1项

研究领域

主要从事深度学习与模式识别,交叉研究领域涉及化学,生物,医学。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Correlation and redundancy on machine learning performance for chemical databases,J CHEMOMETR,2018年 2. Ensemble Learning for Overall Power Conversion Efficiency of the All-Organic Dye-Sensitized Solar Cells,IEEE ACCESS,2018年 3. Predicting pathological response to neoadjuvant chemotherapy in breast cancer patients based on imbalanced clinical data,PERSONAL AND UBIQUITOUS COMPUTING,2018年 4. Realizing performance improvement of blue thermally activated delayed fluorescence molecule DABNA by introducing substituents on the paraposition of boron atom,CHEM PHYS LETT,2018年 5. Theoretical investigation on the effect of fluorine and carboxylate substitutions on the performance of benzodithiophene‑diketopyrrolopyrrole‑based polymer solar cells,THEOR CHEM ACC,2018年 6. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases,JOURNAL OF CHEMINFORMATICS,2016年 7. A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells,J COMPUT CHEM,2015年 8. 最小二乘支持向量机方法用于提高低水平量子化学方法计算吸收能的精度,CHEM J CHINESE U,2012年 9. Generalized Regression Neural Network Based Quantitative Structure-Property Relationship for the prediction of absorption energy,Proceedings of 2012 National Conference on Information Technology and Computer Science,2012年 10. A Promising Tool to Achieve Chemical Accuracy for Density Functional Theory Calculations on Y-NO Homolysis Bond Dissociation Energies,INT J MOL SCI,2012年 11. 基于平均影响值的反向传播神经网络方法用于提高密度泛函理论计算Y—NO键均裂能精度,CHEM J CHINESE U,2012年 12. Improving the B3LYP Absorption Energies by Using the Neural Network Ensemble and K-nearest Neighbor Approach,ICIC Express Letters,Part B:Applications,2011年 13. Accurate Prediction of Absorption Energies Based on Principal Component Analysis and Neural Network,ICIC Express Letters,Part B:Applications,2011年 14. Particle filter guided SVM based visual tracking,ICIC Express Letters,Part B:Applications,2011年 15. Improving the Accuracy of Density Functional Theory (DFT) Calculation for Homolysis Bond Dissociation Energies of Y-NO Bond :Generalized Regression Neural Network Based on Grey Relational Analysis and Principal Component Analysis,INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,2011年 16. Combined density functional theory and ensembled Elman network correction approach for electronic excitation energies,2011 2nd Asia-Pacific Conference on Wearable Computing Systems(APWCS2011),2011年 17. Accurate Prediction of Heats of Formation for C1-C16 Alkanes:The Genetic Algorithm and Neural Network Approach with simple Input Desctiptors,2010 Second International Conference on Computational Intelligence and Natural Computing(CINC2010),2010年 18. Accurate prediction of optical absorption energies by neural network ensemble approach,The 5th International Conference on Frontier of Computer Science and Technology,2010年 19. Accurate Prediction of Transition Energies in Organic Molecules,The 5th International Conference on Frontier of Computer Science and Technology,2010年 20. Improving the Accuracy of Low Level Density Functional Theory Calculation for Absorption Energies:The Least Squares Support Vector Machine,2010 International Conference on Intelligent Computation Technology and Automation,2010年

推荐链接
down
wechat
bug