近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Linlin Liu, Jian Du* et al., Synthesis of Flexible Heat Exchanger Networks Consudering Gradually Accumulated Deposit and Cleaning Management, Industrial & Engineering Chemistry Research,2019,58(27):12124-12136.(SCI, 封面)
Siwen Gu, Jian Du* et al., Optimization-Based Framework for Designing Dynamic Flexible Heat Exchanger Networks, Industrial & Engineering Chemistry Research,2019,58(15):6026-6041.(SCI, 封面)
Weida Li, Jian Du* et al., Economic evaluation and environmental assessment of shale dehydration process, Journal of Cleaner Production, 2019,232:487-498 (SCI, 一区)
Yu Zhuang, Jian Du* et al., An Extended Superstructure Modeling Method for Simultaneous Synthesis of Direct Work Exchanger Networks, Chemical Engineering Research and Design, 2019,144:258-271
Shuai Zhang, Jian Du* et al., An optimization model for carbon capture utilization and storage supple chain: A case study in Northeastern China, Applied Energy, 2018,231:194-206(SCI, IF:8.558 一区TOP)
Linlin Liu, Haodong Song, Lei Zhang, Jian Du*, Heat-integrated Water Allocation Network Synthesis for Industrial Parks with Sequential and Simultaneous Design, Computers & Chemical Engineering, 2018,108: 408-424.(SCI)
Gu, S., Liu, L., Zhang, L., Bai, Y., Wang, S., Du, J.* (2018). Heat exchanger networks synthesis integrated with flexibility and controllability, Chinese Journal of Chemical Engineering, doi: 10.1016/j.cjche.2018.07.017 (SCI)
Zhuang, Y., Zhang, L., Liu, L., Meng, Q., Du, J.* (2018). Simultaneous Synthesis of WHEN Based on Superstructure Modelling Considering Thermodynamic and Economic Factors. In Computer Aided Chemical Engineering (Vol. 44, pp. 1033-1038). Elsevier. (CPCI)
Liu, L., Sheng, Y., Zhang, L., Du, J.*, Meng, Q. (2018). Water networks synthesis for industrial parks respecting to unpredictable scenarios. In Computer Aided Chemical Engineering (Vol. 44, pp. 1021-1026). (CPCI)
李伟达,刘琳琳张磊,王少靖,都健.* (2018). 基于灵敏度分析的页岩气净化流程的模拟与优化,化工学报,69(3),1008-1013. (EI, 第十六届中国化工学会信息技术应用专业委员会年会优秀论文)
Yu Zhuang, Linlin Liu, Lei Zhang, Jian Du*, Upgraded Graphical Method for the Synthesis of Direct Work Exchanger Networks. Industrial & Engineering Chemistry Research, 2017,56(48): 14304-14315.(SCI)
Yu Zhuang, Linlin Liu, Lei Zhang, Jian Du*, Direct work exchanger network synthesis of isothermal process based on improved transshipment model. Journal of the Taiwan Institute of Chemical Engineers, 2017,81: 295-304.(SCI)
Yu Zhuang, Linlin Liu, Qilei Liu, Jian Du*, Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model, Chinese Journal of Chemical Engineering, 2017, 25: 1052–1060.(SCI)
Linlin Liu, Jian Wang, Haodong Song, Jian Du*, Fenglin Yang, Multi-period water network management for industrial parks considering predictable variations. Computer and Chemical Engineering, 2017, 104: 172-184.(SCI)
Zhuang, Y., Liu, L., Zhang, L., & Du, J.* (2017). Direct work exchanger network synthesis of isothermal process based on improved transshipment model. Journal of the Taiwan Institute of Chemical Engineers, 81, 295-304. (SCI)
Zhuang, Y., Liu, L., Zhang, L., & Du, J.* (2017). Upgraded Graphical Method for the Synthesis of Direct Work Exchanger Networks. Industrial & Engineering Chemistry Research, 56(48), 14304-14315. (SCI)
Linlin Liu, Jian Wang, Haodong Song, Jian Du*, Fenglin Yang, Synthesis of Water Networks for Industrial Parks Considering Inter-plant Allocation. Computer and Chemical Engineering, 2016, 91: 307-317.(SCI)
Jilong Li, Jian Du*, Zongchang Zhao, Pingjing Yao, Efficient Method for Flexibility Analysis of Large-Scale Nonconvex Heat Exchanger Networks. Industrial & Engineering Chemistry Research, 2015, 54(43), 10757- 10767.(SCI)
Linlin Liu, Jie Fan, Pengpeng Chen, Jian Du*, Fenglin Yang, Synthesis of Heat Exchanger Networks Considering Fouling, Aging, and Cleaning. Industrial & Engineering Chemistry Research, 2015, 54(1): 296-306.(SCI)
Linlin Liu, Jian Du*, Fenglin Yang, Combined mass and heat exchange network synthesis based on stage-wise superstructure model. Chinese Journal of Chemical Engineering, 2015, 23(9): 1502-1508.(SCI)