近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1.Z. Cheng, G. Zhang , B. Zhang, F. Ma* and Z. Lu*, Tuning the electronic structure of hexagonal boron nitride by carbon atom modification: a feasible strategy to reduce sliding friction, Mater. Res. Express 6, 036306 (2019). 2.K. Liu, G. Zhang, J. Pu, F. Ma*, G. Wu, Z. Lu*, Impermeability of boron nitride defect-sensitive monolayer with atomicoxygen healing ability, Ceram. INT. 44, 13888 (2018). 3. X. An, J. Sun, Z. Lu*, F. Ma* and G. Zhang, Pressure induced insulator semiconductor transition in bilayer hexagonal boron nitride, Ceram. INT. 43, 6626 (2017). 4. X. An, H. Yao, F. Ma*, and Z. Lu*, The influence of electronic transfer on friction properties of hexagonal boron nitride, RSC Adv., 5, 106239 (2015). 5. A.E. Colbert, W. Wu, E.M. Janke, F. Ma, and D.S. Ginger*, Effects of Ligands on Charge Generation and Recombination in Hybrid Polymer/Quantum Dot SolarCells, J. Phys. Chem. C, 119, 24733 (2015). 6. H. Nagaoka, F. Ma, D.W. deQuilettes, S.M. Vorpahl, M.S. Glaz, A.E. Colbert, M.E. Ziffer, and D.S. Ginger*, Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes, J. Phys. Chem. Lett. 6, 669 (2015). 7. G. Shao, M.S. Glaz, F. Ma, H. Ju, and D.S. Ginger*, Intensity-Modulated Scanning Kelvin Probe Microscopy for Probing Recombination in Organic Photovoltaics, ACS Nano 8 (10) 10799, (2014). 8. J. Huang*, F. Ma, X. Jiang, H. Wang, J. Li, Microwave permeability of Ninanoplatelet composites, J. Magn. Magn. Mater., 331, 151 (2013). 9. L. Gu, N. Y. Cui, L. Cheng, Q. Xu, S. Bai, M. M. Yuan, W. W. Wu, J. M. Liu, Y. Zhao, F. Ma, Y. Qin*, Z. L. Wang*, Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode, Nano Lett., 13, 91 (2013). 10. S. Bai, Q. Xu, L. Gu, F. Ma, Y. Qin*, Z. L. Wang*, Single Crystalline Lead Zirconate Titanate (PZT) Nano/micro-wire Based Self-powered UV Sensor, Nano Ener.,1,789 (2012). 11. F. Ma*, J. Ma, J. Huang, and J. Li*, The shape dependence of magnetic and microwave properties for Ni nanoparticles, J. Magn. Magn. Mater. 324, 205, (2012). 12. W. Wu, S. Bai, N. Cui, F. Ma, Z. Wei, Y. Qin*, and E. Xie, Increasing UV photon response of ZnO sensor with nanowires Array, Science of Adv. Mater., 2, 402 (2010). 13. F. Ma, Y. Qin*, and Y. Li, Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy, Appl. Phys. Lett., 96, 202507, (2010). 14. F. Ma, Y. Qin*, F. Wang, and D. Xue, The architecture assembled with Ni nanocones and its microwave absorbing property, Scripta Mater., 63 , 1145, (2010). 15. F. Ma, J. Huang, J. Li*, and Q. Li, Microwave properties of sea–urchin–like Ni nanoparticles, J. Nanosci. Nanotech., 9, 3219 (2009). 16. F. Ma, Q. Li, J. Huang, and J. Li*, Morphology control and characterizations of nickel sea-urchin-like and chain-like nanostructures, J.Cryst.Growth,310,3522 (2008). 17. J. Huang, Y. Qin, J. Li*, X. Jiang, and F. Ma, Microwave permittivity, microwave permeability, and microwave absorption of Ni nanoplatelet composites, J. Nanosci. Nanotech., 8, 3967 (2008). 18. J. Li*, J. Huang, Y. Qin, and F. Ma, Magnetic and microwave properties of cobalt nanoplatelets, Mater. Sci. Eng. B, 138, 199 (2007).