近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
于晋臣,彭名书.一类具有时滞的商业周期模型的Hopf分支[J]。北京交通大学学报,2013-07,2013(3),139:142
吕兴,彭名书.Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model[J]。chaos,2013-03,23(1),13122:13122
程冉冉,彭名书.Stability analysis and Synchronization in Continuous-time Complex Networks with delayed coupling[J]。chaos,2013-11,23(4),43108:43111
彭名书."Higher-codimension bifurcations in a discrete unidirectional neural[J]。Chaos,2008-12,18(2),
彭名书.Stability, symmetry-breaking bifurcation[J]。Int. J. Bifurcations Chaos Appl. Sci. Eng.,2008-12,18(5),
彭名书.Complex dynamics in discrete delayed models with D-4 symmetry[J]。CHAOS SOLITONS & FRACTALS,2008-12,37(2),
彭名书,yuan yuan.Synchronization and desynchronization in a delayed discrete neural network[J]。Int. J. Bifurcations Chaos Appl. Sci. Eng,2007-12,17(3),
彭名书.Bifurcation and stability analysis of nonlinear waves in $/D_n$ symmetric delay differential systems[J]。Jorunal of Differential Equations,2007-12,232(2),
彭名书.关于"一类拟线性二阶微分方程解的振动与非振动的判定"的若干注记[J]。数学学报,2004-12,47(4),
彭名书.关于"一类拟线性二阶微分方程解的振动与非振动的判定"的若干注记[J]。数学学报,2004-12,47(4),
彭名书,Ahmet Ucar.The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximation of delay-differential equations[J]。Chaos, Solitons and Fractals,2004-12,21(?),
彭名书.Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model[J]。Chaos, Solitons and Fractals,2004-12,20(?),
彭名书.Bifurcation and chaotic behavior in the Euler method for a Ucar prototype delay model[J]。Chaos, Solitons and Fractals,2004-12,22(?),
彭名书,Er-Wei Bai,Karl E. Lonngren.On the synchronization of delay discrete models[J]。Chaos, Solitons and Fractals,2004-12,22(?),
彭名书.Oscillation criteria for second-order impulsive delay difference equations[J]。Applied Mathematics and Computation,2003-12,146(?),
彭名书.A Note Correcting the Proof of a Lemma in a Recent Paper[J]。Computers & mathematics with applications,2003-12,45(?),
彭名书.A Note Correcting the Proof of a Lemma in a Recent Paper[J]。Computers & mathematics with applications,2003-12,45(?),
彭名书,葛渭高,徐千里.二阶时滞微分方程非振动性质在脉冲扰动下的不变性[J]。数学学报,2002-12,45(5),
彭名书,王准,葛渭高.非线性泛涵微分方程解的性态[J]。应用数学学报,2002-12,25(2),