近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[33] L. L. Hu, A. Mandelis, and Q. M. Sun, Ultrahigh-frequency heterodyne lock-in carrierography for large-scale quantitative multi-parameter imaging of colloidal quantum dot solar cells, IEEE J. Photovolt. 9, 132 (2019) [32] Q. M. Sun, A. Melnikov, A. Mandelis, and R. H. Pagliaro, Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography, Appl. Phys. Lett. 112, 012105 (2018) [31] Q. M. Sun, A. Melnikov, J. Wang, and A. Mandelis, Simultaneous determination of effective carrier lifetime and resistivity of Si wafers using the nonlinear nature of photocarrier radiometric signals, J. Phys. D: Appl. Phys. 51, 15LT01 (2018) [30] Q. M. Sun, A. Melnikov, A. Mandelis, and R. H. Pagliaro, Surface recombination velocity imaging of HF-etched Si wafers using dynamic heterodyne lock-in carrierography, Solid State Phenomena 282, 13 (2018) [29] J. Wang, A. Mandelis, Q. M. Sun, B. C. Li, and C. M. Gao, Temperature- and size-dependent exciton dynamics in PbS colloidal quantum dot thin films using combined photoluminescence spectroscopy and photocarrier radiometry, J. Phys. Chem. C 122, 5759 (2018) [28] H. T. Jiang, B. C. Li, B. X. Zhao, Q. M. Sun, C. M. Gao and L. C. Chen, Evaluation of aging process of silicone rubber composite insulators with photothermal radiometry, J. Phys. D: Appl. Phys. 51, 425304 (2018) [27] P. Song, A. Melnikov, Q. M. Sun, A. Mandelis, and J. Y. Liu, Contactless non-destructive imaging of doping density and electrical resistivity of semiconductor Si wafers using lock-in carrierography, Semicond. Sci. Tech. 33, 12LT01 (2018) [26] L. L. Hu, M. X. Liu, A. Mandelis, Q. M. Sun, A. Melnikov, and E. H. Sargent, Colloidal quantum dot solar cell electrical parameter non-destructive quantitative imaging using high-frequency heterodyne lock-in carrierography and photocarrier radiometry, Sol. Energy Mater. Sol. Cells 174, 405 (2018) [25] A. Melnikov, L. J. Chen, D. R. Venegas, K. Sivagurunathan, Q. M. Sun, A. Mandelis, and I. R. Rodriguez, Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges, Rev. Sci. Instrum. 89, 044901 (2018) [24] X. X. Guo, K. Shojaei-Asanjan, D. Zhang, K. Sivagurunathan, Q. M. Sun, P. Song, A. Mandelis, B. Chen, M. Goledzinowski, Q. Zhou, and F. Comeau, Highly sensitive and specific noninvasive in-vivo alcohol detection using wavelength-modulated differential photothermal radiometry, Biomed. Opt. Express 9, 4638 (2018) [23] L. L. Hu, M. X. Liu, A. Mandelis, Q. M. Sun, A. Melnikov, E. H. Sargent, Colloidal quantum dot solar cell electrical parameter imaging using camera-based high-frequency heterodyne lock-in carrierography, Proc. IEEE Photovoltaic Specialists Conference 44, 3129 (2017) [22] Q. M. Sun, A. Melnikov, and A. Mandelis, Quantitative carrier density wave imaging in silicon solar cells using photocarrier radiometry and lock-in carrierography, Int. J. Thermophys. 37, 45 (2016) [21] Q. M. Sun, A. Melnikov, and A. Mandelis, Camera-based high frequency heterodyne lock-in carrierographic (frequency-domain photoluminescence) imaging of crystalline silicon wafers, Phys. Status Solidi A 213, 405 (2016) [20] J. Wang, A. Mandelis, A. Melnikov, and Q. M. Sun, Trap state effects in PbS colloidal quantum dot exciton kinetics using photocarrier radiometry intensity and temperature measurements, Int. J. Thermophys. 37, 60 (2016) [19] Q. M. Sun, Y. F. Wang, C. M. Gao, and H. Cui, Influence of carrier transport on diffraction efficiency of steady-state photocarrier grating, Int. J. Thermophys. 36, 1029 (2015) [18] H. T. Huan, C. M. Gao, L. X. Liu, Q. M. Sun, B. X. Zhao, L. J. Yan, Research of ultrasound-mediated transdermal drug delivery system using cymbal-type piezoelectric composite transducer, Int. J. Thermophys. 36, 1312 (2015) [17] H. Cui, Y. F. Wang, C. M. Gao, and Q. M. Sun, Theoretical analysis of nonlinear recombination process and its influence on diffraction efficiency of steady-state photocarrier grating, Int. J. Thermophys. 36, 1320 (2015) [16] L. J. Yan, C. M. Gao, B. X. Zhao, Q. M. Sun, and F. Wang, Fast transmission photothermal radiometry via sampling by an internal computer sound card, J. Electron. Sci. Tech. 13, 73 (2015) [13] Q. M. Sun, A. Melnikov, and A. Mandelis, Quantitative heterodyne lock-in carrierographic imaging of silicon wafers and solar cells, Proc. IEEE Photovoltaic Specialists Conference 40, 1860 (2014) [12] Q. M. Sun, A. Melnikov, and A. Mandelis, Camera-based lock-in and heterodyne carrierographic photoluminescence imaging of crystalline silicon wafers, Int. J. Thermophys. 36, 1274 (2014) [11] B. X. Zhao, Y. F. Wang, C. M. Gao, and Q. M. Sun, Thermal diffusivity determination of solids by time-domain photoacoustic piezoelectric technique, Chin. Sci. Bull. 59, 3348 (2014) [10] L. J. Yan, C. M. Gao, B. X. Zhao, Q. M. Sun, L. X. Liu, and H. T. Huan, Defects of a-Si thin-film solar cells detected by transmission photothermal radiometric imaging, Int. J. Thermophys. 36, 829 (2014) [9] B. X. Zhao, Y. F. Wang, C. M. Gao, Q. M. Sun, P. H. Wang, Thermal diffusivity of reduced activation Ferritic/Martensitic steel determined by the time domain photoacoustic piezoelectric technique, Int. J. Thermophys. 36, 1150 (2014) [8] Q. M. Sun, A. Melnikov, and A. Mandelis, Quantitative self-calibrating lock-in carrierographic lifetime imaging of silicon wafers, Appl. Phys. Lett. 101, 242107 (2012) [7] Q. M. Sun, Y. F. Wang, C. M. Gao, and Y. Wan, Theoretical analysis of diffraction efficiency of photocarrier grating, Int. J. Thermophys. 33, 2103 (2012) [6] B. X. Zhao, Y. F. Wang, C. M. Gao, T. Liu, and Q. M. Sun, Thermal properties of porcine tissues determined by modified photoacoustic piezoelectric technique, Int. J. Thermophys. 34, 1513 (2012) [5] Q. M. Sun, C. M. Gao, B. X. Zhao, and H. B. Rao, Thermal diffusivity of light-emitting diode packaging material determined by photoacoustic piezoelectric technique, Chin. Phys. B 19, 118103 (2010) [4] Q. M. Sun, C. M. Gao, B. X. Zhao, and Y. F. Bi, A modified photoacoustic piezoelectric model for thermal diffusivity determination of solids, Int. J. Thermophys. 31, 1157 (2010)