近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Orienting electron fillings in d orbitals of cobalt single atoms for effective zinc–air battery at a subzero temperature Yan, Y.; Wen, B.; Liu, M.*; Lei, H.; Yang, J.; He, S.; Qu, Z.; Xia, W.; Li, H.* and Zeng, J.* Adv. Funct. Mater. DOI: 10.1002/adfm.202316100.
Recycling valuable alkylbenzenes from polystyrene through methanol-assisted depolymerization Zeng, L.; Yan, T.; Du, J.; Liu, C.; Dong, B.; Qian, B.; Xiao, Z.; Su, G.; Zhou, T.; Peng, Z.; Wang, Z.; Li, H.* and Zeng, J.* Angew. Chem. Int. Ed. DOI: 10.1002/anie.202404952.
The importance of sintering-induced grain boundaries in copper catalysis to improve carbon-carbon coupling Wu, W.; Luo, L.; Li, Z.; Luo, J.; Zhao, J.; Wang, M.; Ma, X.; Hu, S.; Chen, Y.; Chen, W.; Wang, Z.; Ma, C.; Li, H.* and Zeng, J.* Angew. Chem. Int. Ed. DOI: 10.1002/anie.202404983.
CO-assisted methane oxidation into oxygenates over surface platinum–titanium alloyed layers Yin, H.; Wu, B.; Ma, X.; Su, G.; Han, M.; Lin, H.; Liu, X.; Li, H.* and Zeng, J.* Nano Lett. DOI: 10.1021/acs.nanolett.4c00786.
Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution Zhang, Z.; Jia, C.; Ma, P.; Feng, C.; Yang, J.; Huang, J.; Zheng, J.; Zuo, M.; Liu, M.; Zhou, S.* and Zeng, J.* Nature Commun. 2024, 15, 1767.
Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction Wei, J.; Tang, H.; Sheng, Li.; Wang, R.; Fan, M.; Wan, J.; Wu, Y.; Zhang, Z.*; Zhou, S. and Zeng, J.* Nature Commun. 2024, 15, 559.
Experimental demonstration of topological catalysis for CO2 electroreduction Kong, X.; Liu, Z.; Geng, Z.; Zhang, A.; Guo, Z.; Cui, S.; Xia, C.; Tan, S.; Zhou, S.; Wang, Z.* and Zeng, J.* J. Am. Chem. Soc. 2024, 146, 10, 6536.
Bipyridine-confined silver single-atom catalysts facilitate in-plane C–O coupling for propylene electrooxidation Chi, M.; Zhao, J.; Ke, J.; Liu, Y.; Wang, R.; Wang, C.; Hung, S.-F.; Lee, T.-J.; Geng, Z.* and Zeng, J.* Nano Lett. 2024, 24, 5, 1801.
Efficient interfacial sites between metallic and oxidized cobalt for propene hydroformylation Pu, Z.; Zhao, J.; Yin, H.; Zhao, J.; Ma, X.* and Zeng, J.* Nano Lett. 2024, 24, 3, 852.
Thiol ligand-modified Au for highly efficient electroreduction of nitrate to ammonia Wu, Y.; Kong, X.; Su, Y.; Zhao, J.; Ma, Y.; Ji, T.; Wu, D.; Meng, J.; Liu, Y.*; Geng, Z.* and Zeng, J.* Precis. Chem. 2024, 2, 3, 112.
Metabolic engineering of yeast for the production of carbohydrate-derived foods and chemicals from C1–3 molecules Tang, H.; Wu, L.; Guo, S.; Cao, W.; Ma, W.; Wang, X.; Shen, J.; Wang, M.; Zhang, Q.; Huang, M.; Luo, X.; Zeng, J.; Keasling, J. D.* and Yu, T.* Nature Catal. 2024, 7, 21.
Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons Du, J.; Zeng, L.; Yan, T.; Wang, C.; Wang, M.; Luo, L.; Wu, W.; Peng, Z.; Li, H. and Zeng, J.* Nature Nanotechnol. 2023, 18, 772.
Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion Dai, Y.; Li, H.; Wang, C.; Xue, W.; Zhang, M.; Zhao, D.; Xue, J.; Li, J.; Luo, L.; Liu, C.; Li, X.; Cui, P.; Jiang, Q.; Zheng, T.; Gu, S.; Zhang, Y.; Xiao, J.*; Xia, C.* and Zeng, J.* Nature Commun. 2023, 14, 3382.
Direct synthesis of extra-heavy olefins from carbon monoxide and water Wang, C.; Du, J.; Zeng, L.; Li, Z.; Dai, Y.; Li, X.; Peng, Z.; Wu, W.; Li, H.* and Zeng, J.* Nature Commun. 2023, 14, 2857.
Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots Xue, W.; Liu, X.; Liu, C.; Zhang, X.; Li, J.; Yang, Z.; Cui, P.; Peng, H.; Jiang, Q.; Li, H.; Xu, P.; Zheng, T.*; Xia C.* and Zeng, J.* Nature Commun. 2023, 14, 2137.
Rational engineering of 2D materials as advanced catalyst cathodes for high‐performance metal–carbon dioxide batteries Liu, F.; Zhou, J.; Wang, Y.; Xiong, Y.; Hao, F.; Ma, Y.; Lu, P.; Wang, J.; Yin, J.; Wang, G.; Yu, J.; Yan, Y.; Zhu, Z.; Zeng, J. and Fan, Z.*Small Struct. 2023, 2300025.
Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate Wang, Y.; Zhao, J.; Cao, C.; Ding, J.; Wang, R.; Zeng, J.*; Bao, J.* and Liu, B.*ACS Catal. 2023, 13, 6, 3532.
Efficient electroreduction of nitrate to ammonia with CuPd nanoalloy catalysts Song, Z.; Qin, L.; Liu, Y.; Zhong, Y.; Guo, Q.*; Geng, Z.* and Zeng J.*ChemSusChem DOI:10.1002/cssc.202300202.
Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution Ding, X.; Jia, C.; Ma, P.; Chen, H.; Xue, J.; Wang, D.; Wang, R.; Cao, H.; Zuo, M.; Zhou, S.; Zhang, Z.*, Zeng, J.* and Bao, J.*Nano Lett. DOI:10.1021/acs.nanolett.3c00228.
Direct synthesis of extra-heavy olefins from carbon monoxide and water Wang, C.; Du, J.; Zeng, L.; Li, Z.; Dai, Y.; Li, X.; Peng, Z.; Wu, W.; Li, H.* and Zeng, J.*Nature Commun. 2023, 14, 2857.
Dynamically reversible interconversion of molecular catalysts for efficient electrooxidation of propylene into propylene glycol Ke, J.; Chi, M.; Zhao, J.; Liu, Y.; Wang, R.; Fan, K.; Zhou, Y.; Xi, Z.; Kong, X.; Li, H.; Zeng, J. and Geng, Z.*J. Am. Chem. Soc. DOI: 10.1021/jacs.3c00660.
Biofuel synthesis from carbon dioxide via a bio-electrocatalysis system Bi, H.; Wang, K.; Xu, C.; Wang, M.; Chen, B.; Fang, Y.; Tan, X.*; Zeng, J. and Tan, T.*Chem. Catal. 2023, 3, 3, 100557.
Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling Liang, Y.; Zhao, J.; Yang, Y.; Hung, S.-F.; Li, J.; Zhang, S.; Zhao, Y.; Zhang, A.; Wang, C.; Appadoo, D.; Zhang, L.; Geng, Z.*; Li, F.* and Zeng, J.*Nature Commun. 2023, 14, 474.
Selective CO2 electrolysis to CO using isolated antimony alloyed copper Li, J.; Zeng, H.; Dong, X.; Ding, Y.; Hu, S.; Zhang, R.; Dai, Y.; Cui, P.; Xiao, Z.; Zhao, D.; Zhou, L.; Zheng, T.; Xiao, J.*; Zeng, J.* and Xia, C.*Nature Commun. 2023, 14, 340.
Regulating spin states in oxygen electrocatalysis Zhang, Z.; Ma, P.; Luo, L.; Ding, X.; Zhou, S.* and Zeng, J.*Angew. Chem. Int. Ed. 2023, e202216837.
One-step approach for constructing high-density single-atom catalysts toward overall water splitting at industrial current densities Cao, D.; Zhang, Z.; Cui, Y.; Zhang, R.; Zhang, L.; Zeng, J.* and Cheng, D.* Angew. Chem. Int. Ed. 2023, e202214259.
Directing in-situ self-optimization of single-atom catalysts for improved oxygen evolution Ma, P.; Feng, C.; Chen, H.; Xue, J.; Ma, X.; Cao, H.; Wang, D.; Zuo, M.; Wang, R.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J. and Bao, J. J. Energy. Chem. 2023, 80, 284.
Photo- and electrocatalytic CO2 reduction based on stable lead-free perovskite Cs2PdBr6 Wu D.; Wang, C.; Huo, B.; Hu, K.; Mao, X.; Geng, Z.*; Huang, Q.*; Zhang, W.*; Zeng, J. and Tang, X.* Energy Environ. Matter. DOI: 10.1002/eem2.12411.
Functional CeOx nanoglues for robust atomically dispersed catalysts Li, X.; Pereira-Hernández, X. I.; Chen, Y.; Xu, J.; Zhao, J.; Pao, C.-W.; Fang, C.-Y.; Zeng, J.*; Wang, Y.*; Gates, B. C.* and Liu, J.* Nature 2022, 611, 284.
Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering Zheng, T.; Zhang, M.; Wu, L.; Guo, S.; Liu, X.; Zhao, J.; Xue, W.; Li, J.; Liu, C.; Li, X.; Jiang, Q.; Bao, J.; Zeng, J.*; Yu, T.* and Xia, C.*Nature Catal. 2022, 5, 388.
Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution Cao, D.; Xu, H.; Li, H.; Feng, C.; Zeng, J.* and Cheng, D.*Nature Commun. 2022, 13, 5843.
Ambient-pressure hydrogenation of CO2 into long-chain olefins Li, Z.; Wu, W.; Wang, M.; Wang, Y.; Ma, X.; Luo, L.; Chen, Y.; Fan, K.; Pan, Y.; Li, H.* and Zeng, J.*Nature Commun. 2022, 13, 2396.
Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution Zhang, Z.; Feng, C.; Wang, D.; Zhou, S.*; Wang, R.; Hu, S.; Li, H.; Zuo, M.; Kong, Y.*; Bao J.* and Zeng, J.*Nature Commun. 2022, 13, 2473.
Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals Ke, J.; Zhao, J,; Chi, M.; Wang, M.; Kong, X.; Chang, Q.; Zhou, W.; Long, C.; Zeng, J. and Geng, Z.*Nature Commun. 2022, 13, 932.
Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution Feng, C.; Zhang, Z.; Wang, D.; Kong, Y.; Wei, J.; Wang, R.; Ma, P.; Li, H.; Geng, Z.; Zuo, M.; Bao, J.; Zhou, S.* and Zeng, J.*J. Am. Chem. Soc. 2022, 144, 21, 9271.
Efficient electroreduction of nitrate into ammonia at ultra-low concentrations via enrichment effect Song, Z.; Liu, Y.; Zhong, Y.; Guo, Q.; Zeng, J. and Geng, Z.* Adv. Mater. 2022, 34, 22043.
Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4 Liu, P.; Huang, Z.; Gao, X.; Hong, X.; Zhu, J.; Wang, G; Wu, Y.; Zeng, J. and Zheng, X*. Adv. Mater. 2022, 34, 2200057.
CO2 hydrogenation over Copper/ZnO single-atom catalysts: water-promoted transient synthesis of methanol Wu, W.; Wang, Y.; Luo, L.; Wang, M.; Li, Z.; Chen, Y.; Wang, Z.; Chai, J.; Cen, Z.; Shi, Y.; Zhao, J.; Zeng, J. and Li, H.*Angew. Chem. Int. Ed. 2022, 61(48), e202213024.
Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling Liu, C.; Zhang, M.; Li, J.; Xue, W.; Zheng, T.*; Xia, C.* and Zeng, J.* Angew. Chem. Int. Ed. 2022, 61(3), e202113498.
Photocatalytic conversion of methane: recent advancements and prospects Li, Q.; Ouyang, Y.; Li, H.; Wang, L.* and Zeng, J.*Angew. Chem. Int. Ed. 2022, 61(2), e202108069.
Enhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio Kong, X.; Wang, C.; Xu, Z.; Zhong, Y.; Liu, Y.; Qin, L.; Zeng, J.and Geng, Z.* Nano Lett. 2022, 22, 19, 8000.
Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction Kong, X.; Zhao, J.; Ke, J.; Wang, C.; Li, S.; Si, R.; Liu, B.; Zeng, J. and Geng Z.* Nano Lett. 2022, 22, 9, 3801.
Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling towards CO2 Eletroreduction Zhong, Y.; Kong, X.; Song, Z.; Liu, Y.; Peng, L.; Zhang, L.; Luo, X.; Zeng, J. and Geng, Z.* Nano Lett. 2022, 22, 6, 2554.
Heterogeneous catalysts toward CO2 hydrogenation for sustainable carbon cycle Wang, M.; Luo, L.; Wang, C.; Du, J.; Li, H.* and Zeng, J.*Acc. Mater. Res. 2022, 3, 6, 565.
Neighboring cationic vacancy assisted adsorption optimization on single-atom sites for improved oxygen evolution Wang, D.; Xue, J; Ding, X.; Wei, J.; Feng, C.; Wang, R.; Ma, P.; Wang, S.; Cao, H.; Wang, J.; Zuo, M.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.* ACS Catal. 2022, 12, 19, 12458.
Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation Zhang, Y.; Wang, Q.; Yang, S.; Wang, H.; Rao, D.; Chen, T.; Wang, G.; Lu, J.; Zhu, J.; Wei, S.; Zheng, X.* and Zeng, J. Adv. Funct. Mater. 2022, 32, 2112452.
Stretching C-H bond in methane by solid frustrated Lewis pairs Zhao, J.; Yan, H. and Zeng, J.* Chem. Catal. 2022, 2, 7, 1521.
Modulating hydrogen bonding in single-atom catalysts to break scaling relation for oxygen evolution Ma, P.; Feng, C.; Kong, Y.; Wang, D.; Zuo, M.; Wang, S.; Wang, R.; Kuang, L.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.* Chem Catal. 2022, 2, 2764.
Promoting N2 electroreduction into NH3 over porous carbon by introducing oxygen-containing groups Song, Z.; Liu, Y.; Zhao, J.; Zhong, Y.; Qin, L.; Guo, Q.; Geng, Z.* and Zeng, J. Chem. Eng. J. 2022, 434, 134636.
A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction Iqbal, R.; Ali, S.; Yasin, G.; Ibraheem, S.; Tabish, M.; Hamza, M.; Chen, H.; Xu, H.; Zeng, J. and Zhao, W.* Chem. Eng. J. 2022, 430, 132642.
Promoting electrocatalytic CO2 methanation using a molecular modifier on Cu surfaces Wang, C.; Kong, X.; Huang, J.; Yang, Y.; Zheng, H.; Wang, H.; Dai, S.; Zhang, S.; Liang, Y.; Geng, Z.*; Li, F.* and Zeng, J.* J. Mater. Chem. A 2022, 14, 474.
Single atoms supported on metal oxides for energy catalysis Li, R.; Luo, L.; Ma, X.; Wu, W.; Wang, M. and Zeng, J.* J. Mater. Chem. A 2022, 10, 5717.
Highly active and thermostable submonolayer La(NiCo)OΔ catalyst stabilized by a perovskite LaCrO3 support Zhao, T.; Zhao, J.; Tao, X.; Yu, H.; Li, M.; Zeng J. and Wang, H.* Commun. Chem. 2022, 5, 70.
Atomically dispersed platinum in surface and subsurface sites on MgO have contrasting catalytic properties for CO oxidation Chen, Y.; Rana, R.; Huang, Z.; Vila, F. D.; Sours, T.;Perez-Aguilar, J. E.; Zhao, X.; Hong, J.; Hoffman, A. S.; Li, X.; Shang, C.; Blum, T.; Zeng, J.; Chi, M.; Salmeron, M.; Kronawitter, C. X.; Bare, S. R.*; Kulkarni, A. R.* and Gates, B. C.* J. Phys. Chem. Lett. 2022, 13, 17, 3896.
Progresses on carbon dioxide electroreduction into methane Zheng, H.; Yang, Z.; Kong, X.; Geng, Z.* and Zeng, J.* Chin. J. Catal. 2022, 43, 1634.
Low-temperature C–H bond activation: ethylbenzene-to-styrene conversion on rutile TiO2(110) Lai, Y.; Pu, Z.; Liu, P.; Li, F.; Zeng, J.*; Yang, X. and Guo, Q.* J. Phys. Chem. C 2022, 126, 14, 6231.
Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate Lin, C.; Liu, Y.; Kong, X.; Geng, Z.* and Zeng, J.* Nano Res. 2022, 15, 10078.
Lysine-functionalized SnO2 for efficient CO2 electroreduction into formate Lin, C.; Xu, Z.; Kong, X.; Zheng, H.; Geng, Z.* and Zeng, J.* ChemNanoMat 2022, 8, e202200020.
Molecular stabilization of sub-nanometer Cu clusters for selective CO2 electromethanation Zhang, H.; Yang, Y.; Liang, Y.; Li, J.; Zhang, A.; Zheng, H.; Geng, Z.*; Li, F.* and Zeng, J.* ChemSusChem 2022, 15(1), e202102010.
Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li, H.; Li, A.; Pao, C.-W.; Xiao, J.*; Xia, C.* and Zeng, J.* Nature Nanotechnol. 2021, 16, 1386.
Water enables mild oxidation of methane to methanol on gold single-atom catalysts Luo, L.; Luo, J.; Li, H.*; Ren, F.; Zhang, Y.; Liu, A.; Li, W.* and Zeng, J.* Nature Commun. 2021, 12, 1218.
Symmetry-breaking sites for activating linear carbon dioxide molecules Li, H.; Zhao, J.; Luo, L.; Du, J. and Zeng, J.* Acc. Chem. Res. 2021, 54, 1454.
Doping regulation in transition metal compounds for electrocatalysis Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.* and Zeng, J.* Chem. Soc. Rev. 2021, 50, 9817.
Pd-Pt tesseracts for oxygen reduction reaction Chen, S.; Zhao, J.; Su, H.; Li, H.; Wang, H.; Hu, Z.; Bao, J.* and Zeng, J.* J. Am. Chem. Soc. 2021, 143, 496.
Copper-based plasmonic catalysis: recent advances and future perspectives Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.* and Zeng, J.* Adv. Mater. 2021, 33, 2008145.
Bias-adaptable CO2-to-CO conversion via tuning the binding of competing intermediates Liang, Y.; Zhao, J.; Zhang, H.; Zhang, A.; Wang, S.; Li, J.; Shakouri, M.; Xiao, Q.; Hu, Y.; Liu, Z.; Geng, Z.*; Li, F.* and Zeng, J.* Nano Lett. 2021, 21, 20, 8924.
Electronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction Zhang, A.; Liang, Y.; Li, H.; Wang, S.; Chang, Q.; Peng, K.; Geng, Z.* and Zeng, J. Nano Lett. 2021, 21, 18, 7789.
In-situ generated high-valent iron single-atom catalyst for efficient oxygen evolution Zhang, Z.; Feng, C.; Li, X.; Liu, C.; Wang, D.; Si, Rui.; Yang, J.; Zhou, S.* and Zeng, J.* Nano Lett. 2021, 21, 11, 4795.
Co-based molecular catalysts for efficient CO2 reduction via regulating spin states Kong, X.; Ke, J.; Wang, Z.; Liu, Y.; Wang, Y.; Zhou, W.; Yang, Z.; Yan, W.; Geng, Z.* and Zeng, J.* Appl. Catal. B: Environ. 2021, 290, 120067.
A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH Xing, Y.; Chen, H.; Liu, Y.; Sheng, Y.; Zeng, J.; Geng, Z.* and Bao, J.* Chem. Commun. 2021, 57, 1502.
Inductive effect as a universal concept to design efficient catalysts for CO2 electrochemical reduction: electronegativity difference makes a difference Chen, H.; Fu, W.; Geng, Z.; Zeng, J.* and Yang, B.* J. Mater. Chem. A 2021, 9, 4626.
Synthesis of tunable syngas on cobalt-based catalysts towards carbon dioxide reduction Huang, M.; Kong, X.; Wang, C.; Geng, Z.; Zeng, J.* and Bao, J.* ChemNanoMat 2021, 7, 2.
Enhance the activity of multi-carbon products for Cu via P doping Kong, X.; Wang, C.; Zheng, H.; Geng, Z.*; Bao, J.* and Zeng, J.* Sci. China Chem. 2021, 7, 1096.
A theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts Chen, Y.; Rana, R.; Sours, T; Vila, F. D.; Cao, S.; Blum, T.; Hong, J.; Hoffman, A. S.; Fang, C.-Y.; Huang, Z.; Shang, C.; Wang, C.; Zeng, J.; Chi, M.; Kronawitter, C. X.*; Bare, S. R.*; Gates, B. C.*, and Kulkarni, A. R.* J. Am. Chem. Soc. 2021, 143, 48, 20144.
Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8 Zhang, Y.*; Huang, X.; Wang, L.; Cao, C.; Zhang, H.; Wei, P.; Ding, H.; Song, Y.; Chen, Z.; Qian, J.; Zhong, S.; Liu, Z.; Wang, M.; Zhang, W.; Jiang, W.; Zeng, J.; Yao, G.* and Wen, L.*Biomaterials 2021, 271, 120720.
Probing the nickel corrosion phenomena in alkaline electrolyte using tender x-ray ambient pressure x-ray photoelectron spectroscopy Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J. and Crumlin, E. J.* J. Phys. D: Appl. Phys. 2021, 374001.
Electrochemical deposition as a universal route for fabricating single-atom catalysts Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.* and Zeng, J.* Nature Commun. 2020, 11, 1215.
Advanced electrocatalysts with single-metal-atom active sites Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; Zhao, D.; Xiao, F.; Zhu, X.; Zeng, Y.; Shao, M.*; Chen, S.*; Wu, G.*; Zeng, J.* and Wang, C.* Chem. Rev. 2020, 120, 12217.
Single atom of iron on MoS2 nanosheets for N2 electroreduction into ammonia Su, H.; Chen, L.; Chen, Y.; Si, R.; Wu, Y.; Wu, X.; Geng, Z.*; Zhang, W.* and Zeng, J.* Angew. Chem. Int. Ed. 2020, 59, 20411.
Surface iron species in a palladium-iron intermetallic promote and stabilize CO2 methanation Luo, L.; Wang, M.; Cui, Y.; Chen, Z.; Wu, J.; Cao, Y.; Luo, J.; Dai, Y.; Li, W.-X.; Bao, J.* and Zeng, J.* Angew. Chem. Int. Ed. 2020, 59, 14434.
A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.* and Zeng, J.* Adv. Mater. 2020, 32, 1907690.
In-Situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate Zhang, A.; Liang, Y.; Li, H.; Zhang, B.; Liu, Z.; Chang, Q.; Zhang, H.; Zhu, C.; Geng, Z.*; Zhu, W.* and Zeng, J.* Nano Lett. 2020, 20, 8229.
Dimensionality control of electrocatalytic activity in perovskite nickelates Cao, C.; Shang, C.; Li, X.; Wang, Y.; Liu, C.; Wang, X.; Zhou, S.* and Zeng, J.* Nano Lett. 2020, 20, 2837.
Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis Li, X.; Li, X.; Liu, C.; Huang, H.*; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.*; Yang, J. and Zeng, J.* Nano Lett. 2020, 20, 1403.
Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid Xing, Y.; Kong, X.; Guo, X.; Liu, Y.; Li, Q.; Zhang, Y.; Sheng, Y.; Yang, X.; Geng, Z.* and Zeng, J.* Adv. Sci. 2020, 7, 1902989.
Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies Liu, Y.; Kong, X.; Guo, X.; Li, Q.; Ke, J.; Wang, R.; Li, Q.; Geng, Z.* and Zeng, J.* ACS Catal. 2020, 10, 1077.
Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts Kong, X.; Liu, Y.; Li, P.; Ke, J.; Liu, Z.; Ahmad, F.; Yan, W.; Li, Z.; Geng, Z.* and Zeng, J.* Appl. Catal. B: Environ. 2020, 268, 118452.
Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core-shell nanocubes as an ideal platform Cui, Y.; Ma, K.; Chen, Z.; Yang, J.; Geng, Z.* and Zeng, J.* J. Catal. 2020, 381, 427.
Tuning the coordination number of Fe single atoms for the efficient reduction of CO2 Chen, H.; Guo, X.; Kong, X.; Xing, Y.; Liu, Y.; Yu, B.; Li, Q.; Geng, Z.*; Si, R.* and Zeng, J.*Green Chem. 2020, 22, 7529.
Boost selectivity of HCOO- using anchored Bi single atoms towards CO2 Reduction Yang, X.; Cheng, Y.; Qin, L.; Wu, X.; Wu, Y.; Yan, T.; Geng, Z.* and Zeng, J.* ChemSusChem 2020, 13, 6307.
Ultra-sensitive and selective detection of arsenic(III) via electroanalysis over cobalt single-atom catalysts Li, P.-H.; Yang, M.*; Li, Y.-X.; Song, Z.-Y.; Liu, J.; Lin, C.-H.*; Zeng, J.* and Huang, X.* Anal. Chem. 2020, 92, 6128.
The midas touch on copper into palladium Zeng, J.* Sci. China Chem. 2020, 63, 1740.
Constructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction Li, X.; Zheng, T.; Zhang, L.; Zhao, S.; Chen, Y.; Wei, M.; Shang, C.; Bao, J.* and Zeng, J.* Sci. China Chem. 2020, 63, 1705.
Oscillation of work function during reducible metal oxide catalysis and correlation with the activity property Pan, Y.; Shen, X.; Holly, M. A.; Yao, L.; Wu, D.; Bentalib, A.; Yang, J.; Zeng, J.* and Peng, Z.* ChemCatChem 2020, 12, 85.
Quantitative insights into non-uniform plasmonic hotspots due to symmetry breaking induced by oblique incidence Zhou, Y.*; Li, H.; Zhang, G.; Wei, D.; Zhang, L.; Meng, Y.; Zheng, X.; Ma, Z.*; Zeng, J.* and Yang, X. Phys. Chem. Chem. Phys. 2020, 22, 19932.
Molecular modification of single cobalt sites boosts the catalytic activity of CO2 electroreduction into CO Zhong, Y.; Kong, X.; Geng, Z.; Zeng, J.*; Luo, X.* and Zhang, L. Chem PhysChem 2020, 21, 2051.
Probing the surface chemistry for Reverse Water Gas Shift Reaction on Pt(111) using Ambient Pressure X-ray Photoelectron Spectroscopy Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J.; Mun, B. S. and Crumlin, E. J.* J. Catal. 2020, 391, 123.