当前位置: X-MOL首页全球导师 国内导师 › 朱鸿亮

个人简介

教育经历 2003.09-2008.07: 中国农业大学 博士 1999.09-2003.07: 中国农业大学 学士 工作经历 2013.04至今: 中国农业大学食品科学与营养工程学院 教授(中国农业大学拔尖人才) 2010.02-2013.01: 美国得州农工大学 博士后 2008.08-2010.01: 美国得州理工大学 博士后 教授课程 《分子生物学专题》、《分子生物学技术》、《生物统计与试验设计》

研究领域

果蔬采后生理与分子生物学, 果蔬营养物质代谢调控, 果实发育和成熟机制

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Li, X., Yang, Y., Zeng, N., Qu, G., Fu, D., Zhu, B., Luo, Y., Ostersetzer-Biran, O., & Zhu, H. (2022). Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development. Horticulture research, 9, uhac134. https://doi.org/10.1093/hr/uhac134 Ma, L., Yang, Y., Wang, Y., Cheng, K., Zhou, X., Li, J., Zhang, J., Li, R., Zhang, L., Wang, K., Zeng, N., Gong, Y., Zhu, D., Deng, Z., Qu, G., Zhu, B., Fu, D., Luo, Y., & Zhu, H. (2022). SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato. The Plant cell, 34(7), 2747–2764. https://doi.org/10.1093/plcell/koac104 Zhu, G., & Zhu, H. (2022). Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. Frontiers in plant science, 13, 847169. https://doi.org/10.3389/fpls.2022.847169 Deng, Z., Ma, L., Zhang, P., & Zhu, H. (2022). Small RNAs Participate in Plant-Virus Interaction and Their Application in Plant Viral Defense. International journal of molecular sciences, 23(2), 696. https://doi.org/10.3390/ijms23020696 Sun, Z., Zang, Y., Zhou, L., Song, Y., Chen, D., Zhang, Q., Liu, C., Yi, Y., Zhu, B., Fu, D., Zhu, H., & Qu, G. (2021). A tomato receptor-like cytoplasmic kinase, SlZRK1, acts as a negative regulator in wound-induced jasmonic acid accumulation and insect resistance. Journal of experimental botany, 72(20), 7285–7300. https://doi.org/10.1093/jxb/erab350 Ma, L., Cheng, K., Li, J., Deng, Z., Zhang, C., & Zhu, H. (2021). Roles of Plant Glycine-Rich RNA-Binding Proteins in Development and Stress Responses. International journal of molecular sciences, 22(11), 5849. https://doi.org/10.3390/ijms22115849 Wang, T., Zhang, C., Zhang, H., & Zhu, H. (2021). CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops. Journal of agricultural and food chemistry, 69(45), 13260–13269. https://doi.org/10.1021/acs.jafc.1c00104 Gao, Y., Wei, W., Fan, Z., Zhao, X., Zhang, Y., Jing, Y., Zhu, B., Zhu, H., Shan, W., Chen, J., Grierson, D., Luo, Y., Jemri?, T., Jiang, C. Z., & Fu, D. Q. (2020). Corrigendum to: Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. Journal of experimental botany, 71(12), 3759. https://doi.org/10.1093/jxb/eraa247 Yang, Y., Liu, X., Wang, K., Li, J., Zhu, G., Ren, S., Deng, Z., Zhu, B., Fu, D., Qu, G., Luo, Y., & Zhu, H. (2020). Molecular and functional diversity of organelle RNA editing mediated by RNA recognition motif-containing protein ORRM4 in tomato. The New phytologist, 228(2), 570–585. https://doi.org/10.1111/nph.16714 Wang, T., Zhang, H., & Zhu, H. (2019). CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture research, 6, 77. https://doi.org/10.1038/s41438-019-0159-x Yu, T., Tzeng, D. T. W., Li, R., Chen, J., Zhong, S., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2019). Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis. Annals of botany, 123(3), 469–482. https://doi.org/10.1093/aob/mcy178 Wang, T., Deng, Z., Zhang, X., Wang, H., Wang, Y., Liu, X., Liu, S., Xu, F., Li, T., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Horticulture research, 5, 62. https://doi.org/10.1038/s41438-018-0073-7 Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing. Frontiers in plant science, 9, 559. https://doi.org/10.3389/fpls.2018.00559 Li, R., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. The Plant journal : for cell and molecular biology, 94(3), 513–524. https://doi.org/10.1111/tpj.13872 Li, R., Li, R., Li, X., Fu, D., Zhu, B., Tian, H., Luo, Y., & Zhu, H. (2018). Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant biotechnology journal, 16(2), 415–427. https://doi.org/10.1111/pbi.12781 Lu, Y., & Zhu, H. (2022). The regulation of nutrient and flavor metabolism in tomato fruit. Vegetable Research, 2(1), 1-14. Yu, T., & Zhu, H. (2019). Long non-coding RNAs: Rising regulators of plant reproductive development. Agronomy, 9(2), 53. Zhu Guoning, Zhang Chunjiao, Zhu Hongliang. Transformation and Application of Gene Editing System in Food Crops[J]. Future Food Science, 2021, 1(2): 63-73. Li, R., Zhu, H., & Luo, Y. (2016). Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures. International journal of molecular sciences, 17(5), 702. https://doi.org/10.3390/ijms17050702 Zhu, B., Yang, Y., Li, R., Fu, D., Wen, L., Luo, Y., & Zhu, H. (2015). RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Journal of experimental botany, 66(15), 4483–4495. https://doi.org/10.1093/jxb/erv203 Wang, T., Li, R., Wen, L., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2015). Functional Analysis and RNA Sequencing Indicate the Regulatory Role of Argonaute1 in Tomato Compound Leaf Development. PloS one, 10(10), e0140756. https://doi.org/10.1371/journal.pone.0140756 Yang, Y., Wen, L., & Zhu, H. (2015). Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell & bioscience, 5, 59. https://doi.org/10.1186/s13578-015-0050-x Zhu, H., Zhou, Y., Castillo-González, C., Lu, A., Ge, C., Zhao, Y. T., Duan, L., Li, Z., Axtell, M. J., Wang, X. J., & Zhang, X. (2013). Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nature structural & molecular biology, 20(9), 1106–1115. https://doi.org/10.1038/nsmb.2646 Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S. H., Liou, L. W., Barefoot, A., Dickman, M., & Zhang, X. (2011). Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell, 145(2), 242–256. https://doi.org/10.1016/j.cell.2011.03.024 Zhu, H. L., Zhu, B. Z., Li, Y. C., Shao, Y., Wang, X. G., Xie, Y. H., Chen, A. J., Luo, J. J., Jia, X. Y., & Luo, Y. B. (2008). Expression and DNA binding activity of the tomato transcription factor RIN (ripening inhibitor). Bioscience, biotechnology, and biochemistry, 72(1), 250–252. https://doi.org/10.1271/bbb.70577 Zhu, H. L., Zhu, B. Z., Shao, Y., Lin, X. J., Wang, X. G., Gao, H. Y., Xie, Y. H., Li, Y. C., & Luo, Y. B. (2007). Molecular cloning and characterization of ETHYLENE OVERPRODUCER 1-LIKE 1 gene, LeEOL1, from tomato (Lycopersicon esculentum Mill.) fruit. DNA sequence : the journal of DNA sequencing and mapping, 18(2), 131–137. https://doi.org/10.1080/10425170601060921 Zhu, H. L., Zhu, B. Z., Zhang, Y. L., Shao, Y., Wang, X. G., Xie, Y. H., Chen, A. J., Li, Y. C., Tian, H. Q., & Luo, Y. B. (2007). Expression of a truncated ripening inhibitor (RIN) protein from tomato and production of an anti-RIN antibody. Biotechnology letters, 29(9), 1425–1430. https://doi.org/10.1007/s10529-007-9404-8 Zhu, H. L., Zhu, B. Z., Shao, Y., Wang, X. G., Lin, X. J., Xie, Y. H., ... & Luo, Y. B. (2006). Tomato fruit development and ripening are altered by the silencing of LeEIN2 gene. Journal of Integrative Plant Biology, 48(12), 1478-1485. Zhu, H.L., Zhu, B.Z., Fu, D.Q. et al. Role of Ethylene in the Biosynthetic Pathways of Aroma Volatiles in Ripening Fruit. Russ J Plant Physiol 52, 691–695 (2005). https://doi.org/10.1007/s11183-005-0103-9

推荐链接
down
wechat
bug