近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Zhong H, Jiang C, Zhong X, Wang J, Jin B, Yao G, Luo L, Jin F, Non-precious metal catalyst, highly efficient deoxygenation of fatty acids to alkanes with in situ hydrogen from water. J. Clean Prod. 2019, 209, 1228-1234. 2. Zhong H, Yao G, Cui X, Yan P, Wang X, Jin F, Selective conversion of carbon dioxide into methane with a 98% yield on an in situ formed Ni nanoparticle catalyst in water, Chemical Engineering Journal, 2019, 357, 421-427. 3. Zhong H, Iguchi M, Chatterjee M, Ishizaka T, Kitta M, Xu Q, Kawanami H, Interconversion between CO2 and HCOOH under Basic Conditions Catalyzed by PdAu Nanoparticles Supported by Amine-Functionalized Reduced Graphene Oxide as a Dual Catalyst, ACS Catalysis, 2018, 8, 5355–5362. 4. Zhong H, Iguchi M, Chatterjee M, Himeda Y, Xu Q, Kawanami H, Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts, Advanced Sustainable Systems, 2018, 2, 1700161.(邀请综述) 5. Liu, Y.; Huo, Z.*; Song, Z.; Zhang, C.; Ren, D.; Zhong, H.*; Jin, F.*, Preparing a magnetic activated carbon with expired beverage as carbon source and KOH as activator. Journal of the Taiwan Institute of Chemical Engineers 2018, in press. 6. Le Y#, Zhong H#, Yang Y, He R, Yao G, Jin F, Mechanism study of reduction of CO2 into formic acid by in-situ hydrogen produced from water splitting with Zn: Zn/ZnO interface autocatalytic role, Journal of Energy Chemistry, 2017. 26, 936-941. 7. Zhong H*, Katsushi F, Nakano Y, Effects of KHCO3 Concentration on Electrochemical Reduction of CO2 on Copper Electrode, Journal of The Electrochemical Society, 2017, 164, F923-F927. 8. Zhong H, Li Q, Liu J, Yao G, Wang J, Zeng X, Huo Z, Jin F, New method for highly efficient conversion of biomass-derived levulinic acid to γ-valerolactone in water without precious metal catalysts, ACS Sustainable Chemistry & Engineering, 2017, 5, 6517–6523.(杂志官网首页报道) 9. Zhong H, Iguchi M, Song F, Chatterjee M, Ishizaka T, Nagao I, Xu Q, Kawanami H, Automatic high-pressure hydrogen generation from formic acid in the presence of nano-Pd heterogeneous catalysts at mild temperatures, Sustainable Energy & Fuels, 2017, 1, 1049-1055.(Back cover ) 10.Jiang C#, Zhong H#, Yao G, Duo J, Jin F, One-step water splitting and NaHCO3 reduction into hydrogen storage material of formate with Fe as the reductant under hydrothermal conditions, International Journal of Hydrogen Energy, 2017, 42, 17476-17487. 11. Song J, Yang Y, Yao G, Zhong H*, He R, Jin B, Jing Z, Jin F*, Highly efficient synthesis of hydrogen storage material of formate from bicarbonate and water with general Zn powder, Industrial & Engineering Chemistry Research, 2017, 56, 6349–6357. 12. Zhong H, Watanabe M, Enomoto H, Jin F, Kishita A, Aida T, Smith R, Winterization of vegetable oil blends for biodiesel fuels and correlation based on initial saturated fatty acid constituents, Energy Fuels, 2016, 30, 4841-4847. 13.Yun J#, Yao G, Jin F, Zhong H#, Kishita A, Tohji K, Enomoto H, Wang L, Low-temperature and highly efficient conversion of saccharides into formic acid under hydrothermal conditions, AIChE Journal, 2016, 62, 3657-3663. 14. Gao X, Zhong H*, Yao G, Guo W, Jin F*, Hydrothermal conversion of glucose into organic acids with bentonite as a solid-base catalyst, Catalysis Today, 2016, 274, 49-54. 15. Zhong H, Yao H, Yao G, Jin F, Pd/C-catalyzed aluminum reduction of NaHCO3 into acetic acid with water as a hydrogen source, Catalysis Today, 2016, 274, 28-34. 16.Zhong H, Fujii K, Nakano Y, Electroactive species study in the electrochemical reduction of CO2 in KHCO3 solution at elevated temperature, Journal of Energy Chemistry, 2016, 25, 517-522. 17.Zhong H, Gao Y, Yao G, Zeng X, Li Q, Huo Z, Jin F, Highly efficient water splitting and carbon dioxide reduction into formic acid with iron and copper powder, Chemical Engineering Journal, 2015, 280, 215-221. 18. Lyu L, Jin F*, Zhong H*, Chen H, Yao G, A novel approach of reduction of CO2 into methanol by water splitting with aluminum over copper catalyst. RSC Advances, 2015, 5, 31450-31453. 19. Zhong H, Fujii K, Nakano Y, Jin F, Effect of CO2 bubbling into aqueous solutions used for electrochemical reduction of CO2 for energy conversion and storage. The Journal of Physical Chemistry C, 2015, 119 (1), 55–61.