近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1) H. Francis, S. Chen, K. J. Che, M. Hopkinson, and C. Y. Jin, “Generating optical frequency combs via nano-scale all-optical modulators,” in revision with IEEE Photon. Journal, 2019.
2) S. Chen, H. Francis, C.-H. Ho, K.-J. Che, Y.-R. Wang, M. Hopkinson, S.-Y. Zhang, and C.-Y. Jin, “Control of Q factor in laterally-coupled vertical cavities,” accepted by IET Optoelectron., 2019.
3) Y.-R. Wang, C.-Y. Jin, C.-H. Ho, S. Chen, H. Francis, and M. Hopkinson, “Thermodynamic processes on a semiconductor surface during multi-beam laser interference patterning,” IET Optoelectronics, vol. 13, pp. 7-11, 2018.
4) H. Francis, S. Chen, C. H. Ho, K. J. Che, Y. Wang, M. Hopkinson, and C. Y. Jin, “Generation of optical frequency combs using a photonic crystal cavity,” IET Optoelectronics, vol. 13, pp. 23-26, 2018.
5) K. Che, D. Tang, H. Xu, C. Ren, L. Chen, C. Y. Jin, and Z. Cai, “Thermal characteristics of Brillouin microsphere lasers,” IEEE J. Quant. Electron. vol. 53, pp. 1-8, 2018.
6) H. Francis, S. Chen, K.J. Che, Y.R. Wang, C.H. Ho, M. Hopkinson, and C.Y. Jin, “Modulating photonic crystal structures to generate optical frequency combs,” IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, pp. 55-59, 2018.
7) S. Chen, H. Francis, C.-H. Ho, K.J. Che, Y.R. Wang, M. Hopkinson, S.Y. Zhang, C.Y. Jin, “Quality factor control in laterally-coupled vertical cavities,” IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, pp. 60-64, 2018.
8) M. Liao, S. Chen, S. Huo, S. Chen, J. Wu, M. Tang, K. Kennedy, W. Li, M. Martin, T. Baron, C.Y. Jin, I. Ross, A. Seeds, and H. Liu, “Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon,” IEEE J. Sel. Top. Quant. Electron. vol. 23, pp. 1900910, 2017.
9) Z. Ren, Q. Kan, G. Ran, C.Y. Jin, L. Yuan, X. Wang, L. Tao, H. Yu, L. Zhang, W. Chen, K. He, R.-M. Ma, J. Pan, and W. Wang, “Hybrid single-mode laser based on graphene Bragg gratings on silicon,” Opt. Lett. vol. 42, pp. 2134, 2017.
10) Z. Ren, X. Wang, K. He, C.Y. Jin, and Q. Kan, “A parity-time symmetry single-mode laser based on graphene,” J. Mod. Opt. vol. 64, pp. 2133, 2017.
11) R. Johne, R. Schutjens, S. Fattahpoor, C.-Y. Jin, and A. Fiore, “Publisher's Note: Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A vol. 94, pp. 029902, 2016.
12) A. Fiore, F. M. Pagliano, M.Y. Swinkels, C.Y. Jin, and R. Johne, “Vormgeven aan licht,” Nederlands Tijdschrift voor Natuurkunde vol.81, pp. 290, 2016.
13) C.Y. Jin, R. Johne, M.Y. Swinkels, R. Schutjens, T.B. Hoang, L. Midolo, P.J. van Veldhoven, and A. Fiore, “Controlling spontaneous emission by real-time shaping the vacuum field in nano-photonic structures,” SPIE Newsroom, no. 5792, 2015.
14) R. Johne, R. Schutjens, S. Fattahpoor, C.-Y. Jin, and A. Fiore, “Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system,” Phys. Rev. A vol. 91, pp. 063807, 2015.
15) C.Y. Jin, R. Johne, M.Y. Swinkels, T.B. Hoang, L. Midolo, P.J. van Veldhoven, and A. Fiore, “Controlling spontaneous emission beyond the radiative lifetime,” Optics & Photonics News, vol. 25, pp. 44, 2014.
16) C.Y. Jin, R. Johne, M.Y. Swinkels, T.B. Hoang, L. Midolo, P.J. van Veldhoven, and A. Fiore, “Ultrafast nonlocal control of spontaneous emission,” Nature Nanotechnology, vol. 9, pp. 886-890, 2014.
17) C.Y. Jin, O. Wada, “Photonic switching devices based on semiconductor nanostructures,” J. Phys. D. Vol. 47, pp. 133001(1-17), 2014. (Invited Topical Review)
18) J. Yuan, C.Y. Jin, M. Skacel, A. Urbańczyk, T. Xia, P.J. van Veldhoven, and R. Nötzel, “Coupling of InAs quantum dots to the plasmon resonance of In nanoparticles by metal-organic vapour phase epitaxy,” Appl. Phys. Lett. vol. 102, pp. 191111(1-4), 2013. (as the correspondence author)
19) C.Y. Jin, M.Y. Swinkels, R. Johne, T.B. Hoang, L. Midolo, P.J. van Veldhoven, and A. Fiore, “All-optical control of the spontaneous emission of quantum dots using coupled-cavity quantum electrodynamics,” Preprint at: http://arxiv.org/abs/1207.5311, 2012.
20) J. Yuan, H. Wang, P.J. van Veldhoven, J. Wang, T. de Vries, B. Smalbrugge, C.Y. Jin, P. Nouwens, E.J. Geluk, A.Yu. Silov, R. Nötzel, “Controlling polarization anisotropy of site-controlled InAs/InP (100) quantum dots,” Appl. Phys. Lett. vol. 98, pp. 201904(1-3), 2011.
21) C.Y. Jin, O. Kojima, T. Kita, O. Wada, and M. Hopkinson, “Observation of phase shifts in vertical cavity quantum dot switches,” Appl. Phys. Lett. vol. 98, pp. 231101(1-3), 2011.
22) C.Y. Jin, S. Ohta, M. Hopkinson, O. Kojima, T. Kita, O. Wada, “Temperature-dependent carrier tunnelling for self-assembled InAs/GaAs quantum dots with a GaAsN quantum well injector,” Appl. Phys. Lett. vol. 96, pp.151104(1-3), 2010.
23) C.Y. Jin, O. Kojima, T. Inoue, T. Kita, O. Wada, M. Hopkinson, and K. Akahane, “Detailed design and characterization of all-optical switches based on InAs/GaAs quantum dots in a vertical cavity,” IEEE J. Quantum Electron. vol. 46, pp. 1582-1589, 2010.
24) C.Y. Jin, O. Kojima, T. Inoue, S. Ohta, T. Kita, O. Wada, M. Hopkinson, and K. Akahane, “All-optical switch using InAs quantum dots in a vertical cavity,” Conference Proceeding of the 22nd International Conference on Indium Phosphide and Related Materials, pp. 249-252, 2010.
25) C.Y. Jin, O. Kojima, T. Inoue, T. Kita, O. Wada, M. Hopkinson, and K. Akahane, “Self-assembled InAs quantum dots within a vertical cavity structure for all-optical switching devices,” Proceedings of SPIE, vol. 7610, p. 76100Q, 2010.
26) C.Y. Jin, O. Kojima, T. Kita, O. Wada, M. Hopkinson, and K. Akahane, “Vertical-geometry all-optical switches based on InAs/GaAs quantum dots in a cavity,” Appl. Phys. Lett. vol. 95, pp. 021109(1-3), 2009.
27) C.Y. Jin, H.Y. Liu, Q. Jiang, M. Hopkinson, and O. Wada, “Simple theoretical model for the temperature stability of InAs/GaAs self-assembled quantum dot lasers with different p-type modulation doping levels,” Appl. Phys. Lett. vol. 93, pp. 161103(1-3), 2008.
28) C.Y. Jin, H.Y. Liu, S.Y. Zhang, and M. Hopkinson, 'Low-threshold 1.3 μm GaInNAs quantum well lasers using quaternary barriers,' IEEE Photon. Technol. Lett. vol. 20, pp. 942-944, 2008.
29) H.Y. Liu, Y. Qiu, C.Y. Jin, T. Walther, and A.G. Cullis, “1.55 μm InAs quantum dots grown on a GaAs substrate using a GaAsSb metamorphic buffer layer,” Appl. Phys. Lett. vol. 92, pp. 111906(1-3), 2008.
30) Y. Qiu, T. Walther, H.Y. Liu, C.Y. Jin, M. Hopkinson, and A.G. Cullis, “Comparing InGaAs and GaAsSb metamorphic buffer layers on GaAs substrates for InAs quantum dots emitting at 1.55 μm,” Microscopy Semi. Mat. vol. 120, pp. 263-268, 2007.
31) Z.Y. Zhang, I.J. Luxmoore, C.Y. Jin, H.Y. Liu, Q. Jiang, K.M. Groom, D.T. Childs, M. Hopkinson, A.G. Cullis, and R.A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light-emitting diodes,” Appl. Phys. Lett. vol. 91, pp. 081112(1-3), 2007.
32) C.Y. Jin, H.Y. Liu, K.M. Groom, Q. Jiang, M. Hopkinson, T.J. Badcock, R.J. Royce, and D.J. Mowbray, “Effects of photon and thermal coupling mechanisms on the characteristics of self-assembled InAs/GaAs quantum dot lasers,” Phys. Rev. B vol. 76, pp. 085315(1-12), 2007.
33) C.Y. Jin, H.Y. Liu, S.Y. Zhang, Q. Jiang, S.L. Liew, M. Hopkinson, T.J. Badcock, E. Nabavi, and D.J. Mowbray, “Optical transitions in type-II InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett. vol. 91, pp. 021102(1-3), 2007.
34) H.Y. Liu, T.J. Badcock, C.Y. Jin, E. Nabavi, K.M. Groom, M. Hopkinson, and D.J. Mowbray, “Reduced temperature sensitivity of the lasing wavelength in near-1.3-μm InAs/GaAs quantum-dot laser with a stepped composition strain-reducing layer,” Electron. Lett. vol. 43, pp. 670-672, 2007.
35) C.Y. Jin, T.J. Badcock, H.Y. Liu, K.M. Groom, R.J. Royce, D.J. Mowbray, and M. Hopkinson, “Observation and modeling of a room-temperature negative characteristic temperature 1.3 μm p-type modulation doped quantum dot laser,” IEEE J. Quantum Electron. vol. 42, pp. 1259-1265, 2006.
36) T.J. Badcock, H.Y. Liu, K.M. Groom, C.Y. Jin, M. Gutiérrez, M. Hopkinson, D.J. Mowbray, and M.S. Skolnick, “1.3 µm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature,” Electron. Lett. vol. 42, pp. 922-923, 2006.
37) C.Y. Jin, H.Y. Liu, T.J. Badcock, K.M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D.J. Mowbray, “High-performance 1.3μm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc. Optoelectronics vol. 153, pp. 280-283, 2006.
38) M. Hopkinson, C.Y. Jin, H.Y. Liu, P. Navaretti, and R. Airey, “1.34 μm GaInNAs quantum well lasers with low room-temperature threshold current density”, Electron. Lett. vol. 42, pp. 923-924, 2006.
39) H.Y. Liu, C.M. Tey, C.Y. Jin, S.L. Liew, P. Navaretti, M. Hopkinson, and A.G. Cullis, “Effects of growth temperature on the structural and optical properties of 1.6 µm GaInNAs/GaAs multiple quantum wells,” Appl. Phys. Lett. vol. 88, pp. 191907-191909, 2006.
40) H.Y. Liu, S.L. Liew, T. Badcock, D.J. Mowbray, M.S. Skolnick, S.K. Ray, T.L. Choi, K.M. Groom, B. Stevens, F. Hasbullah, C.Y. Jin, M. Hopkinson, and R.A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. vol. 89, pp. 073113-073115, 2006.
41) H.Y. Liu, T.J. Badcock, K.M. Groom, M. Hopkinson, M. Gutierrez, D.T. Childs, C.Y. Jin, R.A. Hogg, I.R. Sellers, D.J. Mowbray, M.S. Skolnick, R. Beanland, and D.J. Robbins, “High-performance 1.3-μm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” Proceedings of SPIE, vol. 6184, p. 18417, 2006.
42) P. Navaretti, C.Y. Jin, H.Y. Liu, R. Airey, and M. Hopkinson, “Dilute nitride-based 1.3-μm high performance lasers,” Proceedings of SPIE, vol. 6184, p. D1840, 2006.
43) C.Y. Jin, Y.Z. Huang, L.J. Yu, and S.L. Deng, “Numerical and theoretical analysis of the crosstalk in linear optical amplifiers,” IEEE J. Quantum Electron. vol. 41, pp. 636-641, 2005.
44) S.L. Deng, Y.Z. Huang, C.Y Jin, L.J Yu, “Theoretical analysis of gain and threshold current density for long wavelength GaAs-based quantum dots lasers,” J. Semiconductors (China) vol. 26, pp. 1898-1904, 2005.
45) C. Liu, C.Y. Jin, Y.Z. Huang, N.H. Zhu, ”Numerical analysis of probe light energy in cross-gain modulation of SOA,” J. Semiconductors (China) vol. 26, pp. 812-815, 2005.
46) C.Y. Jin, Y.Z. Huang, L.J. Yu, and S.L. Deng, “Detailed model and investigation of gain saturation and carrier spatial hole burning for semiconductor optical amplifier with gain clamping by a vertical laser field,” IEEE J. Quantum Electron. vol. 40, pp. 513-518, 2004.
47) C.Y. Jin and Y.Z. Huang, “Wavelength conversion using gain-clamped semiconductor optical amplifier,” Semiconductor Optoelectronics (China) vol. 25, pp. 29-31, 2004.
48) C.Y. Jin, W.H. Guo, Y.Z. Huang, and L.J. Yu, “Photon iterative numerical technique for steady-state simulation of gain-clamped semiconductor optical amplifiers,” IEE Proc. Optoelectronics vol. 150, pp. 503-507, 2003.
49) L.J. Yu, C.Y. Jin, X.L. Lu, and Y.Z. Huang, “Growth of 1.55 µm polarization-insensitive semiconductor optical amplifier,” Semiconductor Optoelectronics (China) vol. 24, pp. 274-275, 2003.