当前位置: X-MOL首页全球导师 国内导师 › 王林翔

个人简介

现任浙江大学机械工程学院机械设计研究所副所长,教授,博士生导师,研究方向机械电子工程,智能结构与控制,浙江省特聘专家,American Journal of Materials Science and Technology  编委,机械工程期刊(中国) 编委,ASME 会员, IEEE 会员,中国力学学会高级会员,中国机械工程学会高级会员,曾应邀为  Smart materials and structurers, Journal of Vibration and Control, Current Opinion in Solid State Materials Science,  International journal of nonlinear mechanics, Materials Science and Engineering. A, Solid State Science, Mechanics Research Communications, Journal of Mathematical Control Science and Applications, Journal of Physcis D, 浙江大学学报(英文版), Mecanica等多家国际性学杂志审稿。

研究领域

机械电子工程 智能结构与元器件 数学建模与分析,非线性动力学

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Dan Wang, LinxiangWang*, Roderick Melnik. Vibration energy harvesting based on stress-induced polarization switching a phase field approach. Smart Materials and Structures. 2017.015 2. 杜修全, 王林翔*, 王旦, 唐志峰. 基于唯象相变理论的磁致伸缩材料耦合滞回动力学模拟. 固体力学学报. 2017.04 3. 吴庭,王林翔. 复合式低频隔振器的设计及其性能分析. 振动与冲击, 2017.06 4. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A hysteresis model for ferroelectric ceramics with mechanism for minor loops, Physic Letters A. 2016, 381(4): 344–350. 5. 李昕,王林翔,陈惟峰. 液压微位移放大器响应频率的研究, 液压与气动, 2016,5:8-12 6. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with sub-loops and frequency. Journal of Magnetism and Magnetic Materials. 2016,410:144–149 7. Dan Wang, LinxiangWang*, RoderickV.N.Melnik. A Preisach-type model based on differential operators for rate-de- pendent hysteretic dynamics. Physica B 470-471 (2015) 102–106 8. Cheng Zhang, Zhangwei Chen, LinxiangWang*. An investigation on the field strength and loading rate dependences of the hysteretic dynamics of magnetorheological dampers. Mech Time-Depend Mater (2015) 19:61–74 10. Linxiang Wang, Jun Yang, and Junbo Lei . Computational martensite re-orientation in shape memory alloys and the related hysteretic dynamics. Model. Simul. Mater. Sci. Eng. 2014, 22, 45006 11. Chen W F, Wang L X, Lv F Z. Modeling of the Stress-Dependent Hysteretic Dynamics of Ferroelectric Materials. 2014, the proceedings of the 5th International Conference on Manufacturing Science and Engineering, April 19-20, Shanghai, China. pp: 606-609. 12. 陈惟峰,王林翔,吕福在.基于压电陶瓷驱动的微小型数字液压泵综述[J].液压与气动,2014,10(1):18-25. 14. Du Xiuquan, Wang Linxiang, Tang Zhifeng, Lv Fuzai,Modeling the rate dependent hysteretic dynamics of magnetostrictive transducers. 2104, 3rd International Conference on Mechanical Automation and Materials Engineering, June 28-29, Wuhan, China. pp: 312-316. 15. L.X.Wang, R.V.N. Melnik, Nonlinear dynamics of shape memory alloy oscillators in tuning structural vibration frequencies. Mechatronics 22 (2012)1085–1096. 17. Fangyin Jin, Rong Liu, Linxiang Wang. Comparison of Three Constitutive Models for the Analysis of Laminar Magnetorheological Fluid Flows. Advanced Materials Research. 2012 Vols. 378-379 : 151-156 18. L. X. Wang, RVN, Melnik, F. Z. Lv, Stress induced polarization switching and coupled hysteretic dynamics in ferroelectric materials, Frontiers of Mechanical Engineering, 2011. 6(3):287-291 19. Rong Liu, Linxiang Wang, Researches on Differential Model of Magnetorheological Dampers in the Dependence on the Loading Rates, Advanced Science Letters, 2011, Vol. 4, P: 814–818. 20. L. X. Wang, Numerical simulation of microstructure growth caused by twinning and detwinning in shape memory alloys, Acta Mechanica Solida Sinica, 2010,23(S.Issue): 204-209。 21. L. X. Wang, RVN, Melnik, Low dimensional approximations to ferroelastic dynamics and hysteretic behaviour due to phase transformations, ASME Trans, Journal of applied mechanics, 2010,77: 031015. 22. L. X. Wang, M. Willatzen, Extension of the Landau theory for hysteretic electric dynamics in ferroelectric ceramics, Journal of Electroceramics, 2010, 24(1):51-57 23. L. X. Wang, RVN, Melnik,Control of coupled hysteretic dynamics of ferroelectric materials with a Landau-type differential model and feedback linearization,Smart Materials & Structures, 2009, 18(7):074011. 24. L. X. Wang, M. Willatzen, Modelling of nonlinear dynamics for reciprocal multi-layer piezoceramic transducer systems, Applied Mathematical Modelling, 2009, 33:2263-2273. 25. L. X. Wang, R. Liu, R. V. N. Melnik, Modeling large reversible electric-field-induced strain in ferroelectric materials using 90o orientation switching, Sci China Ser E-Tech Sci (中国科学E辑英文版), 2009, 52(1): 141-147. 26. M. Willatzen, L. X. Wang, and L.C. Lew Yan Voon, Electrostriction in GaN/AlN heterostructures, Superlattices and Microstructures, 2008, 43(5-6): 436-440. (SCI) 27. L. X. Wang, R. V. N. Melnik, Modifying macroscale variant combinations in 2D structure using mechanical loadings during thermally induced transformation, Material Science and Engineering A, 2008, 481-482:190-193. 28. L. X. Wang, R. V. N. Melnik, Simulation of phase combinations in shape memory alloys patches by hybrid optimization methods, Applied Numerical Mathematics, 2008, 58 (4):511-524. 29. M. Willatzen, L.X. Wang, Mathematical modelling of one-dimensional piezoelectric transducers based on monoclinic crystals, Acta Acustica united with Acustica, 2007, 93 (5):716-721 30. L. X. Wang, R. V. N. Melnik, Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations, Mechanics of Advanced Materials and Structures, 2007, 14 (8):665-676. 31. L. X. Wang, R. V. N. Melnik, Finite volume analysis of nonlinear thermo-mechanical dynamics of shape memory alloys, Heat and Mass Transfer, 2007, 43(6):535-546 32. L. X. Wang, R. V. N. Melnik, Numerical model for vibration damping resulting from the first order phase transformations, Applied Mathematical Modelling, 2007, 31:2008-2018. 33. L.X.Wang, and M. Willatzen, Nonlinear dynamical model For hysteresis based on non-convex potential energy, ASCE, Journal of Engineering Mechanics, 2007, 133(5):506-513. 34. L. X. Wang, R. V. N. Melnik, Model reduction applied to the square to rectangular martensite transformation using proper orthogonal decomposition, Applied Numerical Mathematics, 2007, 57:510-520. 35. L.X. Wang, M. Willatzen, Modelling of nonlinear responses for reciprocal transducers involving polarization switching, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(1):177-189. 36. L. X. Wang, R. V. N. Melnik, Mechanically induced phase combination by Chebyshev collocation methods, Material Science and Engineering A, 2006, 438-440 : 427-430. 37. L. X. Wang, R. V. N. Melnik, Dfferential-algebraic approach for coupled problems of dynamic thermoelasticity, Applied Mathematics and Mechanics, 2006, 27(9):1185-1196. 38. L. X. Wang, R. V. N. Melnik, Two-dimensional analysis of shape memory alloys under small loadings, International Journal of multiscale computational engineering, 2006, 4 (2):291-304. 39. L.X.Wang, H. Kamath, Modelling hysteretic behavior in magnetorheological fluids and dampers using phase-transition theory, Smart Materials and Structures, 2006, 15 (6):1725-1733. 40. L. X. Wang, R. V. N. Melnik, Dynamics of Shape memory alloy patches with mechanically induced transformations, Discrete and Continuous Dynamical System, 2006, 15 (4):1237- 1252. 41. P. Matus, R. V. N. Melnik, L. X. Wang, I. Rybak, Applications of fully conservative schemes in nonlinear thermoelasticity: modelling shape memory alloys, Mathematics and Computers in Simulation, 2004, 65(4-5):489-509. 42. L. X.Wang, R. V. N. Melnik, Dynamics of shape memory alloys patches, Materials Science and Engineering A, 2004,378(1-2):470-474.

推荐链接
down
wechat
bug