个人简介
BSc (First Class Honours) in Chemical Physics, University College London, 1990.
PhD in Chemistry, University College London, 1993.
研究领域
Theoretical Chemical Physics
A fundamental description is sought of the properties of molecules, their mutual interaction, and their interaction with electromagnetic fields. Current and future research areas of interest include long-range intermolecular forces, single- and multi-photon absorption and emission processes, and molecular chirality.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
A. Salam, Quantum Electrodynamics, In Fundamentals of Photonics and Physics, Vol. 1, Ed., David L. Andrews, John Wiley & Sons, Inc., Hoboken, NJ, 229-277 (2015).
A. Salam, “Quantum Electrodynamics Effects in Atoms and Molecules”, WIREs Comput. Mol. Sci. 5, 178-201 (2015).
J. Aldegunde and A. Salam, “Dispersion Energy Shifts Among N Bodies with Arbitrary Electric Multipole Polarisability: Molecular QED Theory”, Mol. Phys. 113, 226-231 (2015).
A. Salam, “Dispersion Potential Between Three-Bodies with Arbitrary Electric Multipole Polarizabilities: Molecular QED Theory, J. Chem. Phys. 140, 044111 1-12 (2014).
A. Salam, “Higher-Order Electric Multipole Contributions to Retarded Non-Additive Three-Body Dispersion Interaction Energies Between Atoms: Equilateral Triangle and Collinear Configurations”, J. Chem. Phys. 139, 244105 1-11 (2013) .
S. Y. Buhmann, H. Safari, S. Scheel and A. Salam, “Body-Assisted Dispersion Potentials of Diamagnetic Atoms”, Phys. Rev. A 87, 012507 1-10 (2013).
A. Salam, “Mediation of Resonance Energy Transfer by a Third Molecule”, J. Chem. Phys. 136, 014509 1-5 (2012).
A. Salam, “Molecular Quantum Electrodynamics of Radiation-Induced Intermolecular Forces”, Adv. Quant. Chem. 62, 1-34 (2011).
J. J. Rodriguez and A. Salam, “Effect of Medium Chirality on the Rate of Resonance Energy Transfer”, J. Phys. Chem. B115, 5183-5190 (2011).
J. J. Rodriguez and A. Salam, “On the Influence of Nonlocal Molecular Vibrations and Charge Transfer on the Spectra of Aggregated Push-Pull Chromophores”, J. Chem. Phys. 134, 154512 (2011).
J. J. Rodriguez and A. Salam, “Casimir-Polder Potential in a Dielectric Medium Out of Thermal Equilibrium”,Phys. Rev. A 82, 062522 1-6 (2010).
A. Salam and D. A. Micha, “Photoinduced Quantum Dynamics in Molecules and at Adsorbates”, Molec. Phys. 108, 3223-3234 (2010). Invited Article.
J. J. Rodriguez and A. Salam, “On the Role of Dissipation on the Casimir-Polder Potential Between Molecules in Dielectric Media”, J. Chem. Phys. 133, 164501 1-8 (2010).
J. J. Rodriguez and A. Salam, “Influence of Medium Chirality on Electric Dipole-Dipole Resonance Energy Transfer”, Chem. Phys. Lett. 498, 67-70 (2010).
P. Fischer and A.Salam, “Molecular QED of Coherent and Incoherent Sum-frequency and Second-harmonic Generation in Chiral Liquids in the Presence of a Static Electric Field”, Molec. Phys. 108, 1857-1868 (2010).
A. Salam, “On the Manifestation of Casimir Effects in Intermolecular Interactions via the Method of Induced Moments”, J. Phys. Conf. Ser. 161, 012040 1-14 (2009).
A. Salam, “Molecular Quantum Electrodynamics in the Heisenberg Picture: A Field Theoretic Viewpoint”, Int. Rev. Phys. Chem. 27, 405-448 (2008).
A. Salam, “Two Alternative Derivations of the Static Contribution to the Radiation-Induced Intermolecular Energy Shift”, Phys. Rev. A 76, 063402 1-5 (2007).
B. W. Alligood and A. Salam, “On the Application of State Sequence Diagrams to the Calculation of the Casimir-Polder Potential”, Molec. Phys. 105, 395-404 (2007).
A. Salam, “A General Formula Obtained From Induced Moments for the Retarded van der Waals Dispersion Energy Shift Between Two Molecules With Arbitrary Electric Multipole Polarizabilities: I. Ground State Interactions”, J. Phys. B: At. Mol. Opt. Phys. 39 , S651-S661 (2006).