当前位置: X-MOL首页全球导师 海外导师 › Hengge, Alvan C.

个人简介

B.S., 1974, University of Cincinnati Ph.D., 1987, University of Cincinnati Postdoctoral, 1987-90, University of Wisconsin Asst. Scientist, 91-96, Institute for Enzyme Research

研究领域

Research in my laboratory straddles the fields of biochemistry and organic chemistry. We are interested in characterizing the mechanistic details of chemical reactions, especially those of biological interest. We also study enzymatic catalysis, with the goal of understanding the origins of the tremendous catalytic power of enzymes. Students in my research group learn a wide variety of skills than span the fields of chemistry and biochemistry. Ongoing projects are examining the chemistry of phosphate esters and sulfate esters. These compounds have great importance in biological systems, where their hydrolysis and their formation are catalyzed with remarkable efficiency by enzymes at rates millions of times (or more) faster than analogous uncatalyzed reactions. Our research seeks to understand how enzymes accomplish this remarkable chemistry.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

New Functional Aspects of the Atypical Protein Phosphatase VHZ. Vyacheslav I. Kuznetsov and Alvan C. Hengge. Biochemistry, 2013 (52), 8012-8025. Conformational Motions Regulate Phosphoryl Transfer in Related Protein Tyrosine Phosphatases. Sean K. Whittier, Alvan C. Hengge, and J. Patrick Loria. Science, 2013 (341), 899-903. DOI: 10.1126/science.1241735. Chemistry and mechanism of phosphatases, diesterases and triesterases. Alvan C. Hengge. Biochim. Biophys. Acta. 2013, 1834(1):415-6. DOI: 10.1016/j.bbapap.2012.09.013. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening. Vyacheslav I. Kuznetsov, Alvan C. Hengge, and Sean J. Johnson. Biochemistry, 2012, 51, 9869-9879. DOI: 10.1021/bi300908y. Metavanadate at the Active Site of the Phosphatase VHZ. Vyacheslav I. Kuznetsov, Anastassia N. Alexandrova, and Alvan C. Hengge. J. Am. Chem. Soc., 2012, 134 (35), 14298–14301. DOI: 10.1021/ja305579h The molecular details of WPD-loop movement differ in the protein-tyrosine phosphatases YopH and PTP1B. Tiago A. S. Brandao, Alvan C. Hengge, and Sean J. Johnson. Archives of Biochemistry and Biophysics 2012, 525, 53-59. DOI: 10.1016/j.abb.2012.06.002. “Insights into the Phosphoryl Transfer Mechanism of Cyclin-Dependent Protein Kinases from ab Initio QM/MM Free-Energy Studies.” Gregory K. Smith, Zhihong Ke, Hua Guo, and Alvan C. Hengge. J. Phys. Chem. B, 2011, 115 (46), 13713-13722. The Divalent Metal Ion in the Active Site of Uteroferrin Modulates Substrate Binding and Catalysis. Natasa Mitic, Kieran S. Hadler, Lawrence R. Gahan, Alvan C. Hengge and Gerhard Schenk, J. Am. Chem. Soc. 2010, 132 (20), 7049–7054. Insights into the Reaction of Protein-tyrosine Phosphatase 1B: Crystal Structures for Transition State Analogs of Both Catalytic Steps. Tiago A. S. Brandao, Alvan C. Hengge, and Sean J. Johnson, .” J. Biol. Chem. 2010, 285 (21), 15874-15883. Impaired acid catalysis by mutation of a protein loop hinge residue in a YopH mutant revealed by crystal structures. Tiago A. S. Brandão, H. Robinson, S. J. Johnson, and A. C. Hengge, J. Am. Chem. Soc. 2009, 131 (2), 778-786. Active-Site Dynamics of SpvC Virulence Factor from Salmonella typhimurium and Density Functional Theory Study of Phosphothreonine Lyase Catalysis, G. K. Smith, Z. Ke, A. C. Hengge, D. Xu, D. Xie and H. Guo, J. Phys. Chem. B, 2009, 113, 15327–15333. Mechanism and Transition State Structure of Aryl Methylphosphonate Esters Doubly Coordinated to a Dinuclear Cobalt(III) Center, G. Feng, E. A. Tanifum, H. Adams, A. C. Hengge and N. H. Williams, J. Am. Chem. Soc. 2009, 131, 12771-12779. Mechanistic Study of Protein Phosphatase-1 (PP1), A Catalytically Promiscuous Enzyme, C. McWhirter, E. A. Lund, E. A. Tanifum, G. Feng, Q. L. Sheikh, A. C. Hengge, and N. H. Williams, J. Am. Chem. Soc., 2008, 130, 13673-13682. Substrate-Promoted Formation of a Catalytically Competent Binuclear Center and Regulation of Reactivity in a Glycerophosphodiesterase from Enterobacter aerogenes, K. S. Hadler, E. A. Tanifum, S. H.-C. Yip, N. Miti_, L. W. Guddat, C. J. Jackson, L. R. Gahan, K. Nguyen, P. D. Carr, D. L. Ollis, A. C. Hengge, J. A. Larrabee, G. Schenk. J. Am. Chem. Soc. 2008, 130, 14129-14138. An Altered Transition State for the Reaction of an RNA Model Catalyzed by a Dinuclear Zinc(II) Catalyst, T. Humphry, S. Iyer, O. Iranzo, J. R. Morrow, J. P. Richard, Piotr Paneth, and A. C. Hengge, J. Am. Chem. Soc. 2008, 130, 17858-17866. The Effects of Sulfur Substitution for the Nucleophile and Bridging Oxygen Atoms in Reactions of Hydroxyalkyl Phosphate Esters, S. Iyer and A.C. Hengge. J. Org. Chem. 2008, 73, 4819-4829. Kinetic Isotope Effects for Alkaline Phosphatase Reactions: Implications for the Role of Active-Site Metal Ions in Catalysis, J. G. Zalatan, I. Catrina, R. Mitchell, P.K. Grzyska, P.J. O'Brien, D. Herschlag and A.C. Hengge. J. Am. Chem. Soc. 2007, 129, 9789-9798. Diesterase Activity and Substrate Binding in Purple Acid Phosphatases, R.S. Cox, G. Schenk, N. Mitic, L.R. Gahan and A.C. Hengge. J. Am. Chem. Soc. 2007, 129, 9550-9551. Mechanism of Rhodium-Catalyzed Carbene Formation from Diazo Compounds, F.M. Wong, J. Wang, A.C. Hengge and W. Wu. Org. Lett. 2007, 9, 1663-1665. Probing the Origin of the Compromised Catalysis of E. coli Alkaline Phosphatase in its Promiscuous Sulfatase Reaction, I. Catrina, P.J. O'Brien, J. Purcell, I. Nikolic-Hughes, J.G. Zalatan, A.C. Hengge and D. Herschlag. J. Am. Chem. Soc. 2007, 129, 5760-5765.

推荐链接
down
wechat
bug