研究领域
Our research program is focused on the development of conceptually new catalytic methods for organic synthesis. Our goals are to uncover, study, and design new catalytic cycles as well as develop reactions of practical value. We achieve these goals through a mixture of organometallic mechanistic studies, organic reaction development, and collaborations. Our researchers come from both synthetic organic and inorganic backgrounds and all students can expect to become well versed in current organic methods and organometallic mechanisms. At present, we are particularly inspired by the diverse reactivity of first-row transition metals (Mn, Fe, Co, Ni, Cu), the untapped potential of combining organic radicals with transition metals, multimetallic catalysis, semiconductor nanoparticles, and the challenge of cross-coupling two different electrophiles selectively.
A variety of cross-electrophile coupling reactions that have been developed in the Weix group, including aryl halides with alkyl halides, alkyl halides with acid chlorides, enones with organic halides, allylic acetates with organic halides, and epoxides with aryl halides (Figure 1). A particular strength of cross-electrophile coupling is functional group compatibility and these reactions are increasingly being used by researchers in both academia and industry.
Our mechanistic studies have uncovered three general approaches to selective cross-coupling: the coupling of an organic radical with an organometal intermediate (Figure 2), the selective generation of allylnickel intermediates from enones that can then react with other electrophiles (Figure 3), and the selective cross-coupling of similar electrophiles through the cooperative action of palladium and nickel (mechanism still under investigation). These mechanistic studies have, in turn, led to the development of new reactions, both in our group and in other groups. For example, the revelation that the coupling of alkyl halides with aryl halides proceeds by the coupling of an aryl halide with an alkyl radical led to the development of alternative methods for generating radicals, such as with Ti(III) and Co(Pc).
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Nsouli, R.; Nayah, S.†; Balakrishnan, V.†; Lin, J.-Y.†; Chi, B. K.; Ford, H. G.; Tran, A. V.; Guzei, I. A.; Basca, J.; Armada, N. R.; Zenov, F.; Weix, D. J.; Ackerman-Biegasiewicz, L. K. G. Decarboxylative Cross-Coupling Enabled by Fe and Ni Metallaphotoredox Catalysis J. Am. Chem. Soc. 2024
Huang, Z.; Akana, M. E.; Sanders, K. M.; Weix, D. J. A decarbonylative approach to alkylnickel intermediates and C(sp3)-C(sp3) bond formation Science 2024
Beleh, O. M.; Alomari, S.; Weix, D. J. Synthesis of Stereodefined Enones from the Cross-Electrophile Coupling of Activated Acrylic Acids with Alkyl Bromides Org. Lett. 2024
Chi, B. K.; Gavin, S. J.; Ahern, B. N.; Peperni, N.; Monfette, S.; Weix, D. J. Sulfone Electrophiles in Cross-Electrophile Coupling: Nickel-Catalyzed Difluoromethylation of Aryl Bromides ACS Catal. 2024, 14, 11087–11100
Weight, B. M.; Weix, D. J.; Tonzetich, Z. J.; Krauss, T. D.; Huo, P. Cavity Quantum Electrodynamics Enables para- and ortho-Selective Electrophilic Bromination of Nitrobenzene J. Am. Chem. Soc. 2024
Tcyrulnikov, S.; Hubbell, A. K.; Pedro, D.; Reyes, G. P.; Monfette, S.; Weix, D. J.; Hansen, E. C. Computationally Guided Ligand Discovery from Compound Libraries and Discovery of a New Class of Ligands for Ni-Catalyzed Cross-Electrophile Coupling of Challenging Quinoline Halides J. Am. Chem. Soc. 2024, 146, 6947–6954
Akana, M. E.; Tcyrulnikov, S.; Akana-Schneider, B. D.; Reyes, G. P.; Monfette, S.; Sigman, M. S.; Hansen, E. C.; Weix, D. J. Computational Methods Enable the Prediction of Improved Catalysts for Nickel-Catalyzed Cross-Electrophile Coupling J. Am. Chem. Soc. 2024, 146, 3043–3051
Ryan, M. J.; Yang, N.; Kwac, K.; Wilhelm, K. B.; Chi, B. K.; Weix, D. J.; Cho, M.; Zanni, M. T. The hydrogen-bonding dynamics of water to a nitrile-functionalized electrode is modulated by voltage according to ultrafast 2D IR spectroscopy PNAS 2023, e2314998120
Twilton, J.†; Johnson, M. R.†; Sidana, V.; Franke, M. C.; Bottecchia, C.; Lehnherr, D.; Lévesque, F.; Knapp, S. M. M.; Wang, L.; Gerken, J. B.; Hong, C. M.; Vickery, T. P.; Weisel, M. D.; Strotman, N. A.; Weix, D. J.; Root, T. W.; Stahl, S. S. Quinone-mediated hydrogen anode for non-aqueous reductive electrosynthesis Nature 2023
Gilbert, M. M.; Trenerry, M. J.; Longley, V. R.; Castro, A. J.; Berry, J. F.; Weix, D. J. Ligand–Metal Cooperation Enables Net Ring-Opening C–C Activation/Difunctionalization of Cyclopropyl Ketones ACS Catalysis 2023, 11277-11290
Franke, M. C.; Weix. D. J. Recent Advances in Electrochemical, Ni-Catalyzed C−C Bond Formation. Isr. J. Chem. 2023, e202300089
Akana-Schneider, B. D.; Weix, D. J. Reductive Arylation of Nitroarenes with Chloroarenes: Reducing Conditions Enable New Reactivity from Palladium Catalysts. J. Am. Chem. Soc. 2023, 145, 16150–16159
Mouat, J. M.; Widness, J. K.; Enny, D. G.; Meidenbauer, M. T.; Awan, F., Krauss, T. D.; Weix, D. J. CdS Quantum Dots for Metallaphotoredox-Enabled Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides, ACS Catal. 2023, 13, 9018–9024
Wang, J.†; Ehehalt, L. E.†; Huang, Z.; Beleh, O. M.; Guzei, I. A.; Weix, D. J. Formation of C(sp2)–C(sp3) Bonds Instead of Amide C–N Bonds from Carboxylic Acid and Amine Substrate Pools by Decarbonylative Cross-Electrophile Coupling. J. Am. Chem. Soc. 2023, 145, 9951–9958.
Piszel, P. E.; Orzolek, B. J.; Olszewski, A. K.; Rotella, M. E.; Spiewak, A. M.; Kozlowski, M. C.; Weix, D. J. Protodemetalation of (Bipyridyl)Ni(II)–Aryl Complexes Shows Evidence for Five-, Six-, and Seven-Membered Cyclic Pathways. J. Am. Chem. Soc. 2023, 145, 8517–8528
Ackerman-Biegasiewicz, L. K. G.; Kariofillis S. K.; Weix, D. J.; Multimetallic-Catalyzed C–C Bond-Forming Reactions: From Serendipity to Strategy. J. Am. Chem. Soc. 2023, 145, 6596–6614.
Su, Z-M.; Twilton, J.; Hoyt, C. B.; Wang, F.; Stanley, L.; Mayes, H. B.; Kang, K.; Weix, D. J.; Beckham, G. T.; Stahl, S. S. Ni- and Ni/Pd-Catalyzed Reductive Coupling of Lignin-Derived Aromatics to Access Biobased Plasticizers. ACS Cent. Sci. 2023, 9, 159–165.
Franke, M. C.; Longley, V. R.; Rafiee, M.; Stahl, S. S.; Hansen, E. C.; Weix, D. J. Zinc-free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell. ACS Catal. 2022, 12, 12617–12626.
Salgueiro, D. C.†; Ehehalt, L. E.†; Johnson, K. A.; Weix, D. J. Discussion Addendum for: Nickel-Catalyzed Cross-Coupling of Aryl Halides with Alkyl Halides: Ethyl 4-(4-(4-methylphenylsulfonamido)-phenyl)butanoate. Org. Synth. 2022, 99, 215-233.
Widness, J. K.; Enny, D. G.; McFarlane-Connelly, K. S.; Miedenbauer, M. T.; Krauss, T. D.; Weix, D. J. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J. Am. Chem. Soc. 2022, 144, 12229–12246.
Salgueiro, D. C.; Chi, B. K.; Guzei, I. A.; García-Reynaga, P.; Weix, D. J. Control of Redox-Active Ester Reactivity Enables a General Cross-Electrophile Approach to Access Arylated Strained Rings. Angew. Chem. Int. Ed. 2022, 61, e202205673.
Kang, K.; Weix, D. J. Nickel-Catalyzed C(sp3)–C(sp3) Cross-Electrophile Coupling of In Situ Generated NHP Esters with Unactivated Alkyl Bromides. Org. Lett. 2022, 24, 2853–2857.
Chi, B. K.; Widness, J. K.; Gilbert, M. M.; Salgueiro, D. C.; Garcia, K. J.; Weix, D. J. In-Situ Bromination Enables Formal Cross-Electrophile Coupling of Alcohols with Aryl and Alkenyl Halides. ACS Catal. 2022, 12, 580–586.
Kang, K.; Loud, N. L.; DiBenedetto, T. A.; Weix, D. J. A General, Multimetallic Cross-Ullmann Biheteroaryl Synthesis from Heteroaryl Halides and Heteroaryl Triflates. J. Am. Chem. Soc. 2021, 143, 21484–21491.
Gilbert, M. M.; Weix, D. J. Mastering mono-bond metathesis. Nat. Chem. 2021, 13, 818–820.
Aguirre, A. L.; Loud, N. L.; Johnson, K. A.; Weix, D. J.; Wang, Y. ChemBead Enabled High-Throughput Cross-Electrophile Coupling Reveals a New Complementary Ligand. Chem. Eur. J. 2021, 27, 12981-12986.
Kim, D.; Chen, C.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. Mechanistic Study of Alkene Hydrosilylation Catalyzed by a β-Dialdiminate Cobalt(I) Complex. Organometallics 2020, 39, 2415-2424.
Kang, K.; Huang, L.; Weix, D. J. Sulfonate Versus Sulfonate: Nickel and Palladium Multimetallic Cross-Electrophile Coupling of Aryl Triflates with Aryl Tosylates. J. Am. Chem. Soc. 2020, 142, 10634-10640.
Kim, S.; Goldfogel, M. J.; Gilbert, M. M.; Weix, D. J. Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Chlorides with Primary Alkyl Chlorides. J. Am. Chem. Soc. 2020, 142, 9902-9907.
Wang, J.; Hoerrner, M. E.; Watson, M. P.; Weix, D. J. Nickel‐Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N‐Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angew. Chem. Int. Ed. 2020, 59, 13484-13489.
Goldfogel, M. J.; Huang, L.; Weix, D. J. Cross-Electrophile Coupling: Principles and New Reactions. In Nickel Catalysis in Synthesis: Methods and Reactions; Ogoshi, S., Ed.; Wiley-VCH: Weinheim, 2020, 352.