当前位置: X-MOL首页全球导师 海外导师 › Miller, Jill S

个人简介

Ph.D., Ecology and Evolutionary Biology, University of Arizona (2000) M.Sc., Ecology and Evolutionary Biology, University of Arizona (1997) B.A., Biology, Colorado College, Colorado Springs, Colorado (1992)

研究领域

The Plant Cell Wall; Wall Associated Kinases The plant cell wall is secreted and assembled by cells such that it can provide structure and shape, and thereby help to determine the form of a plant organ. Control of the synthesis and directional enlargement of the wall is therefore crucial for plant development, but the wall also serves as a first defense against common plant stresses such as pathogens and physical wounding. My lab discovered the vascular plant Cell Wall Associated Kinases, WAKs, and over the last twenty years has helped to establish that they are pectin receptors required for both normal cell elongation and for an induced stress response. The Plant Cell Wall Cell walls differ greatly between species and cell types, but the primary wall or region that is first laid down seems to have a similar basic underlying architecture. A rosette of plasma membrane cellulose synthases extrudes cellulose polymers into the extra cellular space, resulting in intertwined cellulose fibers of varying complexity. Cellulose synthase is associated with the cytoskeleton which helps in its directional synthesis. The cell wall contains a number of other sugar-based polymers, such as hemicellulose and pectin both of which are synthesized in the golgi and secreted via vesicles. Regulation of the direction and time in which the wall is synthesized and expanded can therefore dictate cell size and shape and organ characteristics, since the cell wall restricts the outward forces of cellular turgor. Pectins in plants form a jelly like matrix in which cellulose, hemicellulose and a variety of other carbohydrate and proteins are embedded and collectively are termed the plant cell wall. Pectins are chains of α-(1-4)-linked D-galacturonic acid, forming polymers of homo galacturonic acid (HG) of 100-200 residues. Pectins are present in variable lengths in the cell wall, but are fragmented during wounding or pathogen presentation, and these fragments are termed oligogalacturonides or OGs. Some have suggested OGs play a fundamental role during developmental processes, and there is abundant literature that suggests OGs stimulate a specific cytoplasmic response, including the activation MAPKs and numerous defense related genes, and an accumulation of ROS. Until recently the existence or identity of a pectin or OG specific receptor was unknown. WAKs Are Pectin Receptors Over the past few years, we and one other lab have established that the Arabidopsis Wall Associated Kinases or WAKs are pectin receptors. The WAKs of Arabidopsis bind to pectin in the extracellular space, traverse the plasma membrane, and have a functional serine threonine kinase domain in the cytoplasm. Electron Micrograph with gold labeled WAK on cell surface and cell wall WAKs are bound to pectin in native cell walls and their activity is required for normal cell expansion, yet OGs also bind to WAKs and mediate a response to pathogens and wounding. Our current model is that the type and concentration of pectin present in the wall leads to a WAK-dependent activation of different signaling pathways. Unchallenged but expanding walls would preferentially activate, via WAKs, a cell expansion path that includes Mitogen Activated Protein Kinase 3 (MPK3). When OGs are generated by a wall disturbance, the WAKs may alter their signaling path to help effect the stress response by now also activating MPK6 and a new downstream response. That the in vitro binding assays reveal a higher binding affinity of OGs than longer polymers for WAK suggests a mechanism by which WAKs can switch from binding the native cell wall pectin to OGs, thus distingushing types of pectin. Differential activation by various pectins might be achieved by the specific pectin affinity of an individual receptor, or perhaps combinations of WAKs with as yet unidentified partners. TGFß like receptors of the Chloroplast, Mitochondrion, and Plasma Membrane In the 1990s my lab discovered a family of Arabidopsis receptor-like protein kinases that we initially thought were only active in the thylakoid membrane of the chloroplast. These receptors were identified through a biochemical screen for a protein that phosphorylated the light harvesting antennae (LHC) of photosystem II, and the family was termed TAK for Thylakoid Associated Kinase. We established that indeed TAK1 and TAK2 were required for LHC phosphorylation, and this is important as phosphorylation induces the migration of the LHC between PSI and PSII so as to balance the energy input. Most fascinating it that these receptors have strong structural similarity to the developmentally important TGFb family of metazoans, including alternatively spliced messages that encode inhibitory receptor domains, and a common dimeric, co-receptor activation method. We then realized that the TAK family contained 7 members, some of which were instead localized to the mitochondrion, and to the plasma membrane. Single mutations in TAKs had little phonotypic effect, yet triple mutants appear to create female gametophyte lethality; the pollen germinate and meet the egg yet are unable to correctly fertilize. Our goal is more fully characterize this TAK family, and to establish the respective role of each member that is differentially localized in the cell.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Kamath, A'2011, RA Levin, and JS Miller. 2017. Floral size and shape evolution following the transition to gender dimorphism. American Journal of Botany 104:451-460. Miller, JS, A Kamath '2011, BC Husband, and RA Levin. 2016. Correlated polymorphism in cytotype and sexual system within a monophyletic species, Lycium californicum. Annals of Botany 117:307-317. Levin, RA, EM Keyes '2012, and JS Miller. 2015. Evolutionary relationships, gynodioecy, and polyploidy in the Galápagos endemic Lycium minimum (Solanaceae). International Journal of Plant Sciences 176:197-210. Blank, CM'2014, RA Levin, and JS Miller. 2014. Intraspecific variation in gender strategies in Lycium (Solanaceae): Associations with ploidy and changes in floral form following the evolution of gender dimorphism. American Journal of Botany 101:2160-2168. Diggle, PK and JS Miller. 2013. Developmental plasticity, genetic assimilation, and the evolutionary diversification of sexual expression in Solanum. American Journal of Botany 100:1050-1060. Levin, RA, G Bernardello, C Whiting'2010 and JS Miller. 2011. A new generic circumscription in tribe Lycieae (Solanaceae). Taxon 60:681-690. Miller JS and JL Kostyun'2009. 2011. Functional self-incompatibility in a peripheral population of Solanum peruvianum (Solanaceae). Heredity 107:30-39. Miller, JS, A Kamath'2011, J Damashek'2009, and RA Levin. 2011. Out of America to Africa or Asia: Inference of dispersal histories using nuclear and plastid DNA and the S-RNase self-incompatibility locus. Molecular Biology and Evolution 28:793-801. Stiefkens, L, M Las Peñas, G Bernardello, RA Levin, and JS Miller. 2010. Karyotypes and fluorescent chromosome banding patterns in southern African Lycium (Solanaceae). Caryologia 63:50-61. Temeles, E. J., J. S. Miller, andJ. R. Rifkin'2009. 2010. Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): A role for ecological causation? Philosophical Transactions of the Royal Society B: Biological Sciences 365:1053-1063. Miller, JS, A Kamath'2011, and RA Levin. 2009. Do multiple tortoises equal a hare? The utility of nine noncoding plastid regions for species-level phylogenetics in tribe Lycieae (Solanaceae). Systematic Botany 34:796-804. Levin, RA, AP Whelan'2008, and JS Miller. 2009. The utility of nuclear conserved ortholog set II (COSII) genomic regions for species-level phylogenetic inferences in Lycium (Solanaceae). Molecular Phylogenetics and Evolution 53:881-190. Levin, RA, JM Blanton'2006E, and JS Miller. 2009. Phylogenetic utility of nuclear NIA: A multi-locus comparison of nuclear and chloroplast sequence data for inference of relationships among American Lycieae (Solanaceae). Molecular Phylogenetics and Evolution 50:608-617. Miller, JS, RA Levin, and NM Feliciano'2008. 2008. A tale of two continents: Baker’s rule and the maintenance of self-incompatibility in Lycium (Solanaceae). Evolution 62:1052-1065. Miller, JS and JL Stanton-Geddes'2004. 2007. Gynodioecy in Lobelia siphilitica and L. spicata (Lobeliaceae) from western Massachusetts. Journal of the Torrey Botanical Society 134:349-361. Miller, JS and PK Diggle. 2007. Correlated evolution of fruit size and sexual expression in andromonoecious Solanum sections Acanthophora and Lasiocarpa (Solanaceae). American Journal of Botany 94:1706-1715. Levin, RA, G Bernardello, AM Venter, JR Shak'2006, and JS Miller. 2007. Evolutionary relationships in tribe Lycieae (Solanaceae). Acta Horticulturae 745:225-239. Savage, AE'2004 and JS Miller. 2006. Gametophytic self-incompatibility in Lycium parishii (Solanaceae): Allelic diversity, genealogical structure, and patterns of molecular evolution. Heredity 96:434-444. Levin, RA and JS Miller. 2005. Relationships within tribe Lycieae (Solanaceae): paraphyly of Lycium and multiple origins of gender dimorphism. American Journal of Botany 92:2044-2053.

推荐链接
down
wechat
bug