个人简介
教育经历
1998年中国科学院物理研究所理学博士
1989年电子科技大学理学硕士
1986年北京师范大学理学学士
工作经历
1998至2005年期间,先后在日本名古屋大学、以色列理工大学、德国海德堡大学(洪堡学者)以及新加坡国立大学从事研究工作。2006年加入北京理工大学物理学院
学术成就
已在ACS nano, Adv Funct Mater,Nanoscal, Soft Matter, Crystal Growth & Design,J Phys Chem B/C, Nano Research, Phys Chem Chem Phys,J Chem Phys等刊物上发表论文40余篇,论文引用1200余次, H指数为21(数据来源Google学术)。主要研究成果受到国内外同行关注,被顶级学术期刊 (如Chem Rev, Angew Chem Int Ed, Chem Soc Rev, ACS Nano, J Am Chem Soc 等)的多篇综述文章点评。受邀担任Nano Lett, J Am Chem Soc, ACS Photonics, ACS Nano, Nanoscale, Soft Matter, J Phys Chem Lett, Chem Commun, Anal Chem, Phys Chem Chem Phys, Sci Rep, Langmuir 等期刊审稿人。已主持/参与6项国家自然科学基金项目,目前在研项目为“等离激元介导的光与分子对映选择作用机理研究 (2021-2024年)
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Liu S., Ma X., Song M., Ji C.Y., Song J., Ji Y. L., Ma S., Jiang J., Wu X. C., Li J, Liu M,* and Wang R. Y.,* Plasmonic Nanosensors with Extraordinary Sensitivity to Molecularly Enantioselective Recognition at Nanoscale Interfaces. ACS Nano, 2021 , 15,19535?19545.
Song M., Tong L., Liu S., Zhang Y., Dong J., Ji Y. L., Guo Y., Wu X. C., Zhang X. D., and Wang R. Y.,* Nonlinear Amplification of Chirality in Self-Assembled Plasmonic Nanostructures, ACS Nano 2021, 15, 5715?5724.
Zhao W. J., Zhang W.X., Wang R. Y.,* Ji Y. L., Wu X. C., Zhang X. D.* Photocontrollable Chiral Switching and Selection in Self-Assembled Plasmonic Nanostructure, Adv. Funct. Mater. 2019, 1900587.
Zhao W. J., Wang R. Y.,* We H, Li J. L., Ji Y. L., Jiang X., Wu X. C., Zhang X. D. Recognition of Chiral Zwitterionic Interactions at Nanoscale Interfaces by Chiroplasmonic Nanosensors, Phys. Chem. Chem. Phys. , 2017, 19, 21401-21406.
Wu T., Zhang W., Wang R. Y., Zhang X., * A giant chiroptical effect caused by the electric quadrupole, Nanoscale , 2017, 9, 5110-5118.
Zhang W., Wu T., Wang R. Y., Zhang X., * Amplification of the molecular chiroptical effect by low-loss dielectric nanoantennas, Nanoscale , 2017, 9, 5701-5707.
Zhang W., Wu T., Wang R. Y., Zhang X., * Surface-Enhanced Circular Dichroism of Oriented Chiral Molecules by Plasmonic Nanostructures, J. Phys. Chem. C , 2017, 121, 666?675.
Wu T., Zhang X., Wang R. Y., Zhang X., * Strongly Enhanced Raman Optical Activity in Molecules by Magnetic Response of Nanoparticles, J. Phys. Chem. C , 2016, 120, 14795?14804.
Zhai D., Wang P., Wang R. Y., * Tian X., Ji Y., Zhao W., Wang L., Wei H., Wu X., Zhang, X. Plasmonic Polymers with Strong Chiroptical Response for Sensing Molecular Chirality , Nanoscale , 2015, 7, 10690-10698
Liu Y., Zhao, W., Ji, Y., Wang R.Y., Wu X., Zhang X. D., *Strong superchiral field in hot spots and its interaction with chiral molecules, Europhys. Lett. , 2015, 110, 17008
Wu T., Wang R. Y., Zhang X., * Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light, Sci. Rep. , 2015, 5, 18003.
Wang R. Y.,* Wang P., Liu Y., Zhao W., Zhai D., Hong X., Ji Y., Wu X., Wang F., Zhang D., Zhang W., Liu R., Zhang X.,* Experimental Observation of Giant Chiroptical Amplification of Small Chiral Molecules by Gold Nanosphere Clusters, J. Phys. Chem. C. , 2014, 118, 18, 9690-9695.
Hou S., Wen T., Zhang H., Liu W., Hu X., Wang R. Y., * Hu Z., * Wu X.* Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers, Nano Research , 2014, 7, 1699-1705.
Liu Y., Wang R. Y., Zhang X.* Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures, Opt. Express , 2014, 22,4,4357-4370.
Wu T.,Ren J., Wang R. Y., Zhang X.* Competition of Chiroptical Effect Caused by Nanostructure and Chiral Molecules, J. Phys. Chem. C. 2014, 118, 35, 20529–20537.
Wang P., Chen L. Wang R. Y., * Ji Y., Zhai D., Wu X., Liu Y., Chen K., Xu H.,* Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas, Nanoscale , 2013, 5, 3889–3894.
Wang R.Y., * Wang H., Wu X. C., Ji Y., Wang P., Qu Y., Chung T. S. Chiral assembly of gold nanorods with collective plasmonic circular dichroism response, Soft Matter , 2011,7, 8370–8375.
Liu Y.,Wang R. Y.,* Li J. L., Yuan B., Han M., Wang P., Liu X.Y. Identify Kinetic Features of Fibers Growing, Branching, and Bundling in Microstructure Engineering of Crystalline Fiber Network, CrystEngComm , 2014,16, 5402–5408
Wang R. Y., * Wang P.,Li J. L., Yuan B., Liu Y., Li L., Liu X.Y., From kinetic–structure analysis to engineering crystalline fiber networks in soft materials, Phys. Chem. Chem. Phys. , 2013, 15, 3313-3319.
Li J. L., Liu X. Y. *, Wang X. G., Wang R. Y.,Controlling Nanoparticle Formation via Sizable Cages of Supramolecular Soft Materials, Langmuir , 2011,27, 7820–7827.
Wang R. Y., Liu X. Y.*, Li J. L. Engineering Molecular Self-assembled Fibrillar Networks by Ultrasound, Cryst. Growth & Des. , 2009, 9, 3286-3291.
Xiong J. Y., Liu X. Y.*, Li J. L., Narayanan J., Wang R. Y., Understanding of hydrogel network formation and its application in the architecture of significantly enhanced hydrogel, Appl. Phys. Lett., 2006, 89, 083106-083108.
Li J. L., Wang R. Y., Liu X. Y.* Nanoengineering of a Biocompatible Organogel by Thermal Processing, J. Phys. Chem. B. 2009, 113, 5011-5015.
Wang R. Y., Liu X. Y.*, Narayanan J., Xiong J. Y., Li J. L. Architecture of Fiber Network: From Understanding to Engineering of Molecular Gels, J. Phys. Chem. B . 2006, 110, 25797-25802.
Wang R. Y., Liu X. Y.*, Xiong J. Y., Li J. L. Real-time observations of fiber network formation in molecular organogel: Supersaturation-dependent microstructure and its related rheological property, J. Phys. Chem. B. 2006, 110, 7275-7280.
Wang R.Y., Himmelhaus M.*, Fick J., Herrwerth S., Grunze M. Interaction of Self-Assembled Monolayers of Oligo(ethylene glycol)- Terminated Alkanethiols with Water Studied by Vibrational Sum Frequency Generation (VSFG), J. Chem. Phys. , 2005, 122, 164702.
Li J. L, Liu X. Y.*, Wang R. Y., Xiong J. Y, Architecture of a Biocompatible Supramolecular Material by Supersaturation-driven Fabrication of Fiber Network, J. Phys. Chem. B. 2005, 109, 24231-24235.
Wang, R. Y. * Distribution of Eu3+ ions in LaPO4 nanocrystals, J. Luminescence , 2004, 106, 211-217.