研究领域
Laser spectroscopy, materials chemistry, solar energy conversion, charge transport
Photoactive Liquid Crystals:
This project explores the synthesis and self-assembly of new liquid crystalline (LC), semiconductor materials to understand charge transport in ordered films. The strategy is to create ordered, supramolecular structures that have controllable or predictable phase transitions and change the morphology in response to stimuli, such as magnetic fields. We use ultrafast transient absorption and other steady-state photochemical techniques to study the photoinduced charge, energy, and spin transport in these materials.
We are also developing a confocal ultrafast transient absorption microscope for spectroscopic mapping of the sub-micron, solid-state morphology with a 70 fs temporal resolution and a spatial resolution of ~300 nm in materials for singlet fission and OPVs.
Artificial Photosynthetic Systems
Sunlight is the largest of all renewable energy resources, and if harnessed efficiently, has great potential in light-driven catalysis for H2O splitting and H2 production. Creating a platform for light harvesting, charge separation and catalysis for solar-drivenwater splitting has been an imposing challenge among researchers over the past decade. One approach is to mimic the processes of photosynthesis, which involves well-ordered assemblies of photofunctional chromophores and catalysts within photosysthem II (PSII), for H2O oxidation, and in photosystem I (PSI), for H+ reduction to H2. However, to achieve integrated artificial photosynthesis, chemical and photochemical stabilityare of primary importance in biomimetic systems because this energy harvesting process is a multistep pathway involving highly reactive radical intermediates. Continued efforts are underway to produce an efficient homogeneous catalyst for proton reduction that is earth-abundant, works with a water feedstock, and that function efficiently with sunlight as the sole energy source.
Exploring Multiple Charge and Energy Pathways in QD- Assemblies for Biosensing
We investigated how excited state interactions between CdSe-ZnS quantum dots (QDs) linked to redox-active chromophores compete between Förster Resonance Energy Transfer (FRET) and charge transfer (CT) reactions in collaboration with Igor Medintz at the Naval Research Laboratory.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Algar, W. Russ; Stewart, Michael. H.; Scott, Amy M.; Woohyun, J. Moon,; Medintiz, Igor L. "Quantum Dots as Platforms for Charge Transfer-based Biosensing: Challenges and Opportunities" Journal of Materials Chemistry B, 2014, ASAP
Ley, David; Guzman, Carmen X.; Adolfsson, Karin, H.; Scott, Amy M.; Braunschweig, Adam B.; “Cooperatively Assembling Donor-Acceptor Superstructures Direct Energy Into an Emergent Charge Separated State.” Journal of the American Chemical Society, 2014 ASAP
Scott*, Amy M.; Algar, W. Russ; Stewart, Michael H.; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Deschamps, Jeffrey R.; Goswami, R.; Oh, Eunkeu; Huston, Alan L.; Medintz*, Igor L., “Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium (II) Complexes,” Journal of Physical Chemistry C, 2014, 118, 9239-9250
Bain, S.; Scott, A. M.; Yang, C.; Liang, Y.; Osuna, S.; Houk, K.; Braunschweig, A. “Covalently Patterned Graphene Surfaces by a Force Accelerated Diels-Alder Reaction”, J. Am. Chem. Soc., 2013, 135, 9240 – 9243
Stewart, M.; Huston, A.; Scott, Amy M.; Oh, E. ; Algar, W.; Deschamps, J.; Susumu, K. ; Jain, V.; Prasuhn, D.; Blanco-canosa, J.; Dawson, P. and Medintz, I. “Competition Between FRET and Electron Transfer in Stoichiometrically-Assembled Quantum Dot-Fullerene Conjugates,” ACS Nano, 2013, 7, 9489-9505.
Xiao, S,; Kang, S.J.; Zhong, Y.; Zhang, S.; Scott, A. M.; Moscatelli, A.; Turro, N.J.; Steigerwald, M. L.; Li, H.; and Nuckolls, C. “Controlled Doping in Thin-Film Transistors of Large Contorted Aromatic Compounds,” Angew. Chem. Int. Ed. 2013, 52, 1
Stewart, M. H.; Huston, A.; Scott, A. M.; Efros, A. L.; Melinger, J. S.; Gemmill, K. B.; Trammell, S. A.; Blanco-Canosa, J. B.; Dawson, P.E. and Medintz, I. L. “Complex Förster Energy Transfer Interactions between Semiconductor Quantum Dots and a Redox-Active Osmium Assembly,” ACS Nano, 2012, 6, 5330
Colvin, M. T.; Ricks, A. B.; Scott, A. M.; Co, D; and Wasielewski, M. R. “Intersystem Crossing Involving Strongly Spin Exchange-Coupled Radical Ion Pairs in Donor-Bridge-Acceptor Molecules,” J. Phys. Chem. C 2012, 116, 1923
Irebo, T.; Zhang, M. T.; Markle, T.; Scott, A. M.; and Hammarström, L. “Spanning Four Mechanistic Regions of Intramolecular Proton-Coupled Electron Transfer in a Ru(bpy)32+-Tyrosine Complex” J. Am. Chem. Soc., 2012, 134,16247.
Peng, Y.; Chunmei, Q.; Jockusch, S.; Scott, A. M.; Zengmin, L.; Turro, N. J.; and Ju, J. “CdSe/ZnS Core Shell Quantum Dot-Based FRET Binary Oligonucleotide Probes for Detection of Nucleic Acids,” Photochem. Photobiol.Sci., 2012, 11, 881
Colvin, M. T.; Ricks, A. B.; Scott, A. M.; Smeigh, A. L.; Carmieli, R.; Miura, T.; and Wasielewski, M. R. “Magnetic Field-Induced Switching of the Radical-Pair Intersystem Crossing Mechanism in a Donor-Bridge-Acceptor Molecule for Artificial Photosynthesis,” J. Am. Chem. Soc., 2011, 133(5), 1240
Scott, A. M. and Wasielewski, M. R. “Temperature Dependence of Spin-Selective Charge Transfer Pathways in Donor-Bridge-Acceptor Molecules with Oligomeric Fluorenone and p-Phenylethynylene Bridges,” J. Am. Chem. Soc., 2011, 133(9), 3005
Ricks, A. B.; Solomon, G. C.; Colvin, M. T.; Scott, A. M.; Chen, K.; Ratner, M. A.; Wasielewski, M. R. “Controlling Electron Transfer in Donor-Bridge-Acceptor Molecules Using Cross-Conjugated Bridges,” J. Am. Chem. Soc., 2010, 132 (43), 15427
Miura, T.; Scott, A. M.; Wasielewski, M. R. “Electron Spin Dynamics as a Controlling Factor for Spin-Selective Charge Recombination in Donor-Bridge-Acceptor Molecules,” J. Phys. Chem. C, 2010, 114 (48), 20370
Scott, A. M.; Ricks, A. B.; Colvin, M.T.; Wasielewski, M. R. “Comparing Spin-Selective Charge Transport through Donor-Bridge-Acceptor Molecules having Different Oligomeric Aromatic Bridges,” Angew. Chem. Int. Edit. 2010, 49, 2904 VIP Paper and highlighted by Dirk M. Guldi, “Putting a Positive Spin on Molecular Bridges.” Angew. Chem. Int. Edit. 2010, 49, 7844
Colvin, M.T.; Giacobbe, E.M.; Cohen, B.; Mirua, T.; Scott, A. M.; Wasielewski, M. R. “Competitive Electron Transfer and Enhanced Intersystem Crossing in Photoexcited Covalent TEMPO-Perylene-3,4:9,10-bis(dicarboximide) Dyads:Unusual Spin Polarization resulting from the Radical-Triplet Interaction,” J. Phys. Chem. A., 2010, 141, 1741.
Scott, A. M.; Miura, T.; Ricks, A. B.; Dance, Z. E. X..; Giacobbe, E. M.; Colvin, M. T.; Wasielewski, M. R. “Spin-Selective Charge Transport Pathways through p-Oligophenylene-Linked Donor-Bridge-Acceptor Molecules,” J. Am. Chem. Soc. 2009, 31, 17655.
Giacobbe, E. M.; Mi, Q.; Colvin, M. T.; Cohen, B.; Ramanan, C.; Scott, A. M.; Yeganeh, S.; Marks, T. J.; Ratner, M. A.; Wasielewksi, M. R. “Ultrafast Intersystem Crossing and Spin Dynamics of Photoexcited Perylene-3,4:9,10-bis(dicarboximide) Covalently Linked to a Nitroxide Radical at Fixed Distances.” J. Am. Chem. Soc. 2009, 131, 3700.
Goldsmith, R. H.; Vura-Weis, J.; Scott, A. M.; Borkar, S.; Sen, A.; Ratner, M. A.; Wasielewski, M. R. “Unexpectedly Similar Charge Transfer Rates Through Benzo-annulated Bicyclo[2.2.2]octanes.” J. Am. Chem. Soc. 2008, 130, 7659.
Dance, Z. E. X.; Mickely, S. M.; Wilson, T. M.; Ricks, A. B.; Scott, A. M.; Ratner, M. A.; Wasielewski, M. R. “Intersystem Crossing Mediated by Photoinduced Intramolecular Charge Transfer in Julolidine-Anthracene Molecules with Perpendicular π Systems.” J. Phys. Chem. A. 2008, 112, 4194.