当前位置: X-MOL首页全球导师 海外导师 › Schroeder, Julian

个人简介

Julian Schroeder did his PhD research at the Max Planck Institute for Biophysical Chemistry with Erwin Neher and was a von Humboldt postdoctoral fellow at UCLA School of Medicine. He received awards, including the Presidential Young Investigator Award (NSF), the ASPB Charles Albert Shull Award (1997), a DFG Heinz-Maier-Leibnitz Prize, the Blasker Award in Environmental Science, is Churchill Overseas Fellow at Cambridge University and with collaborators shared the Cozzarelli Prize from PNAS (2010) and a top 10 breakthrough of the year selected by Science (2009). He has served on several advisory boards, including Co-Director of the Food and Fuel for the 21st Century Center. He was von Humboldt Fellow at the MPI for Biochemistry, visiting Professor at the ETH Zurich and is a member of the U.S. National Academy of Sciences, a Fellow of AAAS and the German National Academy of Sciences – Leopoldina.

研究领域

Identifying the basic molecular mechanisms by which plants respond to and mount resistance to environmental stresses is fundamental to understanding stress resistance mechanisms to these “abiotic” in plants and is an important goal for developing future strategies for engineering stress resistance in plants. Several abiotic stress mechanisms that we are characterizing are directly linked to water, including drought stress-induced signal transduction mechanisms, salinity resistance mechanisms and how plants respond to the continuing rise in the atmospheric CO 2 concentration. Our laboratory’s research is directed at the signal transduction mechanisms and pathways that mediate resistance to environmental (“abiotic”) stresses in plants, in particular responses to elevated CO 2, drought, salinity stress, and heavy metal stress. These abiotic stresses have substantial negative impacts and reduce global plant growth and biomass production. These environmental stresses are also relevant in reference to climate change and to expanding available arable land to meet the food and energy needs of the growing human population. Our research is elucidating the molecular and cell biological stress-induced signal transduction cascades in higher plant cells, examining the chain of events by which plant cells respond to elevated CO 2, the drought stress hormone abscisic acid and salinity stress to mount specific resistance and adaptation responses. We have developed and adapted interdisciplinary and systems biological approaches to guard cells, which control water loss and CO 2 intake in plants and which have become a key model system for understanding dynamic cellular signal transduction and ion channel functions in plants. Stomatal pores in the epidermis of leaves allow CO 2 influx into leaves from the atmosphere and also mediate transpirational water loss of plants (see figure). Two guard cells surround each pore and control the opening and closing of stomata. In guard cells, cell biological, molecular, patch clamp and time-resolved calcium imaging studies on genetic signaling mutants in Arabidopsis are allowing us to identify and characterize stress-induced signal transduction mechanisms and cascades. We are combining these analyses with new genomic, systems, bioinformatic and proteomic approaches towards discovering new signaling mechanisms and principles. We have identified CO 2 binding proteins and early CO 2 signal transduction mechanisms, including ion channels in guard cells through which elevated CO 2 closes stomatal pores. We have recently identified new early signal transduction mechanisms and contributed to the characterization and co-identified receptors for the plant stress hormone abscisic acid and have obtained molecular genetic, cell biological, genomic, biophysical whole plant physiological evidence for new genes and mechanisms in guard cells that reduce water loss of Arabidopsis during drought. A second effort in the lab focuses on identifying genes that mediate salt (sodium) stress resistance and heavy metal uptake and detoxification in plants. In this research we identified the plant HKT transporter family and showed its central role in mediating salinity resistance in the reference plant, Arabidopsis thaliana. Research on the staple crops rice and wheat is showing that this same HKT transporter mechanism plays a major role in determining salinity resistance. HKT gene-focused molecular breeding efforts are indicating major improvements in yield, illustrating how basic Arabidopsis research is leading to innovation in agriculture. Our research into heavy metal stress led to the parallel discovery of the genes encoding the central heavy metal detoxification enzymes in plants, phytochelatin synthases. Furthermore recent research has identified the long sought family of transporters that mediate heavy metal accumulation in plant vacuoles. These basic research advances can provide key tools for avoiding toxic heavy metal and arsenic accumulation in edible plant tissues, a problem facing millions of people today leading to cancer and other diseases. Furthermore, these basic research advances can contribute key tools for engineering plants for environmental remediation (bioremediation) by removal of heavy metals from soils. Members in our lab are being trained in interdisciplinary and systems biological techniques while pursuing individual research projects.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Zhang J, Wang N, Miao Y, Hauser F, McCammon JA, Rappel WJ, Schroeder JI. Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements. Proc Natl Acad Sci U S A. 115(44):11129-11137 doi: 10.1073/pnas.1807624115. (2018). PMC6217375 Li Z, Takahashi Y, Scavo A, Brandt B, Nguyen D, Rieu P, Schroeder JI. Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci USA. 115(19):E4522-E4531. doi: 10.1073/pnas.1719659115 (2018). PMC5948973. Hauser F, Li Z, Waadt R, Schroeder JI. SnapShot: Abscisic Acid Signaling. Cell 171(7): 1708-1708 doi: 10.1016/j.cell.2017.11.045. PMID: 29245015 (2017). Li Z, Waadt R, Schroeder JI. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. PLoS Biol. May 18;14(5):e1002461. doi: 10.1371/journal.pbio.1002461. eCollection (2016). Stephan A. B., Kunz H. H., Yang E. & Schroeder J.I. Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci USA pii: 201519555 (2016). Wang C, Hu H, Qin X, Zeise B, Xu D, Rappel WJ, Boron WF, Schroeder JI. Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2;1 aquaporin as carbonic anhydrase 4 interactor. Plant Cell. (2016). Brandt B, Munemasa S, Wang C, Nguyen D, Yong T, Yang PG, Poretsky E, Belknap TF, Waadt R, Alemán F, Schroeder JI. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. Elife. Jul 29;4. doi: 10.7554/eLife.10328. (2015). Engineer, C. B., Ghassemian, M., Anderson, J., Hu, H., Peck, S. & Schroeder, J. I. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature 513: 246-250 (2014). Waadt, R., Hitomi, K., Nishimura, N., Hitomi, C., Adams, S. R., Getzoff, E. D. & Schroeder, J. I. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3:e01739 doi: 10.7554/eLife.01739 (2014). Kunz, H. H., Gierth, M., Herdean, A., Cruz, M., Kramer, D.M., Spetea, C. & Schroeder, J. I. Plastidial Transporters KEA1, 2 and 3 are essential for chloroplast osmoregulation, integrity and pH regulation in Arabidopsis. Proc Natl Acad Sci USA 111: 7480-7485 (2014). Jones, A.M., Xuan, Y., Xu, M., Wang, R.-S., Ho, C.-H., Lalonde, S., You, C.H., Sardi, M.I., Parsa, S.A., Smith-Valle, E., Su, T., Frazer, K.A., Pilot, G., Pratelli, R., Grossmann, G., Acharya, B.R., Hu, H.-C., Engineer, C., Villiers, F., Ju, C., Takeda, K., Su, Z., Dong, Q., Assmann, S.M., Chen, J., Kwak, J.M., Schroeder, J.I., Albert, P., Rhee, S.Y., Frommer, W.B. Border control – a membrane-linked interactome of Arabidopsis. Science 344: 711-716. (2014). Hauser F, Chen W, Deinlein U, Chang K, Ossowski S, Fitz J, Hannon GJ, Schroeder JI. A Genomic-Scale Artificial MicroRNA Library as a Tool to Investigate the Functionally Redundant Gene Space in Arabidopsis. Plant Cell 25: 2848-2863 (2013). Schroeder, J.I., Delhaize, E., Frommer, W.B., Guerinot, M.L., Harrison, M.J., Herrera-Estrella,L., Horie, T., Kochian, L.V., Munns, R., Nishizawa, N.K., Tsay, Y.F. & Sanders, D. Using Membrane Transporters to Improve Crops for Sustainable Food Production. Nature 497: 60-66 (2013). Brandt, B., Brodsky, D.E., Xue, S., Negi, J., Iba, K., Kangasjärvi, J., Ghassemian, M., Stephan, A.B., Hu, H., Schroeder, J.I. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA 109:10593-10598 (2012). Kim, T.H., Kunz, H.H., Bhattacharjee, S., Hauser, F., Park, J., Engineer, C., Liu, A., Ha, T., Parker, J.E., Gassmann, W., Schroeder, J.I. Natural Variation in Small Molecule-Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in Arabidopsis. Plant Cell 24: 5177-5192 (2012). Kim, T.H., Hauser, F., Ha T., Xue S., Böhmer M., Nishimura N., Munemasa S., Hubbard K., Peine N., Lee B.H., Lee S., Robert N., Parker J.E., Schroeder J.I. Chemical genetics reveals negative regulation of abscisic Acid signaling by a plant immune response pathway. Current Biology 21: 990-997 (2011). Xue, S., Hu, H., Ries, A., Merilo, E., Kollist, H. & Schroeder, J.I. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J. 30: 1645-1658 (2011). Hauser, F., Waadt, R & Schroeder, J.I. Evolution of abscisic acid synthesis and signaling mechanisms. Current Biology 21: R346-355 (2011). Song, W.Y., Park, J., Mendoza-Cózatl, D.G., Suter-Grotemeyer, M., Shim, D., Hörtensteiner, S., Geisler, M., Weder, B., Rea, P.A., Rentsch, D., Schroeder, J.I., Lee, Y., Martinoia, E. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187-21192 (2010). Hubbard, K., Nishimura, N., Hitomi, K., Getzoff, E.D. and Schroeder, J.I. Early Abscisic Acid Signal Transduction Mechanisms. Genes & Development 24: 1695-1708 (2010). Hu., H., Boisson-Dernier, A., Israelsson -Nordström, M., Böhmer, M., Xue, S., Ries, A., Godoski, J., Kuhn, J.M. & Schroeder, J.I. Carbonic Anhydrases are Upstream Regulators of CO2-controlled Stomatal Movements in Guard Cells. Nature Cell Biol. 12: 87-93 (2010). Mendoza-Cozatl, D.G., Zhai, Z., Jobe, T.O., Akmakjian, G.Z., Song, W.Y., Limbo, O., Russell, M.R., Kozlovskyy, V.I., Martinoia, E., Vatamaniuk, O.K., Russell, P., Schroeder, J.I. Tonoplast-localized Abc2 Transporter Mediates Phytochelatin Accumulation in Vacuoles and Confers Cadmium Tolerance. J. Biol. Chem. (2010). Kim, T.H., Böhmer, M., Hu, H., Nishimura, N. & Schroeder, J.I. Guard cell signal transduction network; advances in understanding abscisic acid, CO2, and Ca2+ signaling Annual Reviews of Plant Biol. 61: 561-91 (2010). Nishimura, N., Hitomi K, Arvai A.S., Rambo R.P., Hitomi C., Cutler S.R., Schroeder J.I., Getzoff E.D. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1356-7 (2009).

推荐链接
down
wechat
bug