个人简介
Susan Golden received a B.A. (1978) in Biology from Mississippi University for Women and a Ph.D. (1983) in Genetics from the University of Missouri. After postdoctoral research at the University of Chicago, she joined the faculty of Biology at Texas A&M University (1986), where she was promoted to Distinguished Professor in 2003. She joined the Division of Biological Sciences at UCSD in 2008.
During her graduate work she developed genetic tools for the cyanobacterium Synechococcus elongatus (PCC 7942), the first cyanobacterium shown to be subject to genetic transformation. This led to work on regulation of light-responsive photosynthesis gene expression in this organism during her postdoctoral research and at Texas A&M. In the early 1990s she began a collaborative project with C.H. Johnson (Vanderbilt University) and T. Kondo (Nagoya University) that demonstrated circadian rhythms of gene expression in S. elongatus, which is currently the only model organism for a prokaryotic circadian clock. The molecular basis of timekeeping in S. elongatus is now a major focus of her lab. Susan is a member of the Faculty of 1000 Biology, a Fellow of the American Academy of Microbiology, and a Member of the National Academy of Sciences.
研究领域
Circadian Rhythms of Gene Expression in Cyanobacteria
Diverse eukaryotes, and at least one group of prokaryotes—cyanobacteria—use a circadian (24 h) clock to control physiological events and gene expression. S. elongatus shows a circadian rhythm of bioluminescence when it is transformed with a reporter gene that encodes the luciferase of a bioluminescent marine bacterium or firefly. We are using this reporter system to identify components of circadian system. A group of interacting proteins, KaiA, KaiB, and KaiC are at the heart of the cyanobacterial clock, and kinases help to set the clock and transmit temporal information from it to the genes it regulates. Our goal is to understand the basic mechanism of timekeeping and how the clock becomes synchronized with the environment and controls cellular processes.
Functional Genomics in S. elongatus
We are identifying all of the genes in the S. elongatus genome that contribute to circadian rhythms by creating a mutation in each gene and assaying each mutant for circadian phenotypes. This project uses transposon insertions into cosmids and plasmids that contain pieces of S. elongatus DNA; each clone that carries a transposon insertion can be used for recombination into the S. elongatus genome to produce a gene "knockout."
Metabolic Engineering of Cyanobacteria for the production of Biofuels and other Molecules of Interest
Because cyanobacteria grow photosynthetically using water and CO 2 and are easy to manipulate genetically, they are attractive organisms for the production of molecules that have industrial applications. One such application is the production of biofuels as a supplementation of or eventual replacement of petroleum fuels. We are using the powerful genetic tools that have been developed for S. elongatus to explore the production of biofuels in cyanobacteria.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Yang Y, Lam V, Adomako M, Simkovsky R, Jakob A, Rockwell NC, Cohen SE, Taton A, Wang J, Lagarias JC, Wilde A, Nobles DR, Brand JJ, Golden SS. Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A. 2018 Dec 14. pii: 201812871. doi: 10.1073/pnas.1812871115. [Epub ahead of print] PMID: 30552139
Broddrick JT, Welkie DG, Jallet D, Golden SS, Peers G, Palsson BO. Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes. Metab Eng. 2018 Nov 13;52:42-56. doi: 10.1016/j.ymben.2018.11.001. [Epub ahead of print] PMID: 30439494
Cohen SE, McKnight BM, Golden SS. Roles for ClpXP in regulating the circadian clock in Synechococcus elongatus. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7805-E7813. doi: 10.1073/pnas.1800828115. Epub 2018 Jul 30. PMID: 30061418
Welkie DG, Rubin BE, Chang YG, Diamond S, Rifkin SA, LiWang A, Golden SS. Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA. Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7174-E7183. doi: 10.1073/pnas.1802940115. Epub 2018 Jul 10. PMID: 29991601
Rubin BE, Huynh TN, Welkie DG, Diamond S, Simkovsky R, Pierce EC, Taton A, Lowe LC, Lee JJ, Rifkin SA, Woodward JJ, Golden SS. High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. PLoS Genet. 2018 Apr 2;14(4):e1007301. doi: 10.1371/journal.pgen.1007301. eCollection 2018 Apr. PMID: 29608558
Taton, A., A.T. Ma, M. Ota M, S.S. Golden, and Golden JW. 2017. NOT gate genetic circuits to control gene expression in cyanobacteria. ACS Synth Biol. 2017 Aug 21. doi:10.1021/acssynbio.7b00203. [Epub ahead of print
Nagar E., S. Zilberman, E. Sendersky, R. Simkovsky, E. Shimoni, D. Gershtein, M. Herzberg, S.S. Golden, and R. Schwarz R. 2017. Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus. Environ Microbiol. 2017 Jun 5. doi: 10.1111/1462-2920.13814. [Epub ahead of print]
Tseng R., N.F. Goularte, A. Chavan, J. Luu, S.E. Cohen, Y.-G. Chang, J. Heisler, S. Li, A.K. Michael, S. Tripathi, S.S. Golden, A. LiWang., and C.L. Partch. 2017. Structural basis of the day-night transition in a bacterial circadian clock. Science. Mar 17;355(6330):1174-1180. doi: 10.1126/science.aag2516. Epub 2017 Mar 16.
Diamond S, Rubin BE, Shultzaberger RK, Chen Y, Barber CD, Golden SS. 2017. Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA. Proc Natl Acad Sci U S A. 2017 Jan 10. pii: 201613078. doi: 10.1073/pnas.1613078114. [Epub ahead of print] PMID: 28074036
Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, Lee JJ, Golden SS, Palsson BO. 2016. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8344-E8353. doi: 10.1073/pnas.1613446113. PMID: 27911809
Parnasa R, Nagar E, Sendersky E, Reich Z, Simkovsky R, Golden S, Schwarz R. 2016. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Sci Rep. 2016 Aug 25;6:32209. doi: 10.1038/srep32209. PMID: 27558743
Boyd JS, Cheng RR, Paddock ML, Sancar C, Morcos F, Golden SS. 2016. A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock. J Bacteriol. 2016 Aug 25;198(18):2439-47. doi: 10.1128/JB.00235-16. PMID: 27381914
Simkovsky R, Effner EE, Iglesias-Sánchez MJ, Golden SS. Appl Environ Microbiol. 2016. Mutations in Novel Lipopolysaccharide Biogenesis Genes Confer Resistance to Amoebal Grazing in Synechococcus elongatus. 2016 Apr 18;82(9):2738-50. doi: 10.1128/AEM.00135-16. PMID: 26921432 Free PMC Article
Rubin, B.E., K.M. Wetmore, M.N. Price, S. Diamond, R.K. Shultzaberger, L.C. Lowe, G. Curtin G, A.P. Arkin, A. Deutschbauer, and S.S. Golden. 2015. The essential gene set of a photosynthetic organism. Proc Natl Acad Sci U S A. 2015 Oct 27. pii: 201519220. [Epub ahead of print] PMID: 26508635
Luke, C.S., J. Selimkhanov, L. Baumgart, S.E. Cohen, S.S. Golden, N.A. Cookson, and J. Hasty. 2015. A microfluidic platform for long term monitoring of algae in a dynamic environment. ACS Synth Biol. 2015 Sep 15. PMID: 26332284
Chang, Y.-G., S.E. Cohen, C. Phong, W.K. Myers, Y.-I. Kim, R. Tseng, J. Lin, L. Zhang, J.S. Boyd, Y. Lee, S. Kang, D. Lee, S. Li, R.D. Britt, M.J. Rust, S.S. Golden, and A. LiWang. 2015. Protein Fold Switch Joins the Circadian Oscillator to Clock Output in Cyanobacteria. Science 349(6245):324-8. doi: 10.1126/science.1260031. Epub 2015 Jun 25. PMID: 26113641
Diamond S, D. Jun, B.E. Rubin, and S.S. Golden. 2015. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci U S A. 2015 2015 Apr 14;112(15):E1916-25. doi: 10.1073/pnas.1504576112. Epub 2015 Mar 30. PMID: 25825710
Espinosa, J., J.S. Boyd, R. Cantos, P. Salinas, S.S. Golden, and A. Contreras. 2015. Cross-talk and regulatory interactions between the essential response regulator RpaB and cyanobacterial circadian clock output. Proc. Natl. Acad. Sci. U S A. pii: 201424632. [Epub ahead of print] PMID: 25653337
Shultzaberger, R.K., J.S. Boyd, T. Katsuk, S.S. Golden, and R.J. Greenspan. 2014. Single mutations in sasA enable a simpler ΔcikA gene network architecture with equivalent circadian properties. 2014. Proc. Natl. Acad. Sci. U S A, 111:E5069-75. doi: 10.1073/pnas.1419902111 PMID: 25385627
Cohen, SE., M.L. Erb, J. Selimkhanov, G. Dong, J. Hasty, J. Pogliano, and S.S. Golden. 2014. Dynamic Localization of the Cyanobacterial Circadian Clock Proteins. 2014. Current Biology, 24:1836-44. PMID: 25385627