当前位置: X-MOL首页全球导师 海外导师 › Golden, Jim

个人简介

Dr. James W. Golden received a B.S. (1977) in Microbiology from the University of Maryland-College Park and a Ph.D. (1983) in Biology from the University of Missouri-Columbia. After postdoctoral work as an NIH Fellow at The University of Chicago, he joined the Department of Biology at Texas A&M University in 1986. He was promoted to Associate Professor in 1990 and then to Professor in 1996. Dr. Golden moved to the University of California, San Diego in 2008.

研究领域

Genetics, Molecular Biology, and Biotechnology of Cyanobacteria Current areas of research include the development of improved genetic tools for cyanobacterial genetic engineering and the use of these tools to answer basic-science questions and for biotechnology applications. Our biotechnology-related research involves genetic engineering of cyanobacteria to synthesize bioactive natural products and biofuels. Other projects include identifying cyanobacterial genes related to resistance to grazing by amoebal and ciliate predators, the study of genes required for biosynthesis of cyanobacterial toxins, and the identification of cyanobacterial genes that affect fitness for growth during spaceflight or on Mars. These research projects include work with different strains of cyanobacteria, but focus on the laboratory model strain Synechococcus elongatus, strain PCC 7942, which has excellent genetics and is widely used for synthetic biology studies. Past research has focused on the developmental biology of cyanobacterial heterocyst formation, with an emphasis on the genetic regulation of cellular differentiation and the cell-to-cell signaling mechanisms that control multicellular pattern formation. This research uses methods of genetics and molecular biology to understand basic principles of regulation and signaling pathways that control development in a simple prokaryotic multicellular organism, the filamentous cyanobacterium Anabaena (Nostoc), strain PCC 7120. Like all cyanobacteria, Anabaena uses light energy for photosynthesis. Anabaena is also capable of nitrogen fixation, a process that is incompatible with photosynthesis because the nitrogenase enzyme is destroyed by oxygen, a byproduct of photosynthesis. Anabaena solves this problem by spatially separating the two processes into different cell types: photosynthetic vegetative cells and nitrogen-fixing heterocysts. Anabaena grows as a very simple multicellular organism composed of filaments of vegetative cells containing about 10 percent heterocysts. Heterocysts differentiate from vegetative cells at semiregular intervals along the filament and supply fixed nitrogen to neighboring vegetative cells to support their growth. We identified a gene, patS, which encodes a small peptide that functions as a diffusible cell-to-cell signal that acts to control heterocyst pattern formation.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Taton A, Ma AT, Ota M, Golden SS, Golden JW. 2017. NOT Gate Genetic Circuits to Control Gene Expression in Cyanobacteria. ACS Synth Biol doi:10.1021/acssynbio.7b00203. pmcid: https://www.ncbi.nlm.nih.gov/pubmed/28803467 Kim YS, Kim IS, Boyd JS, Taton A, Golden JW, Yoon HS. 2017. Enhanced biomass and oxidative stress tolerance of Synechococcus elongatus PCC 7942 overexpressing the DHAR gene from Brassica juncea. Biotechnol Lett 39(10), 1499-1507, doi:10.1007/s10529-017-2382-6. pmcid: https://www.ncbi.nlm.nih.gov/pubmed/28667417 Agarwal V, Blanton JM, Podell S, Taton A, Schorn MA, Busch J, Lin Z, Schmidt EW, Jensen PR, Paul VJ, Biggs JS, Golden JW, Allen EE, Moore BS. 2017. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat Chem Biol 13:537-543. pmcid: 5391271 https://www.ncbi.nlm.nih.gov/pubmed/28319100 Chen, Y., A. Taton, M. Go, R. E. London, L. M. Pieper, S. S. Golden, and J. W. Golden. 2016. Self-replicating shuttle vectors based on pANS, a small endogenous plasmid of the unicellular cyanobacterium Synechococcus elongatus PCC 7942. Microbiology 162(12):2029-2041. PMID: 27902432. https://www.ncbi.nlm.nih.gov/pubmed/27902432 Taton, A., F. Unglaub, N. E. Wright, W. Y. Zeng, J. Paz-Yepes, B. Brahamsha, B. Palenik, T. C. Peterson, F. Haerizadeh, S. S. Golden, and J. W. Golden. 2014. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res. 42:e136. PMID: 25074377, PMCID: PMC4176158. http://www.ncbi.nlm.nih.gov/pubmed/25074377 Ma, A. T., C. M. Schmidt, and J. W. Golden. 2014. Regulation of gene expression in diverse cyanobacterial species by using theophyllin -responsive riboswitches. Appl. Environ. Microbiol. 80:6704-6713. PMID: 25149516, PMCID: PMC4249034. http://www.ncbi.nlm.nih.gov/pubmed/25149516 Flaherty, B. L., D. Johnson, and J. W. Golden. 2014. Deep sequencing of HetR-bound DNA reveals novel HetR targets in Anabaena sp. strain PCC7120. BMC Microbiol 14:255. PMCID: 4192349. http://www.ncbi.nlm.nih.gov/pubmed/25278209 Taton, A., E. Lis, D. M. Adin, G. Dong, S. Cookson, S. A. Kay, S. S. Golden, and J. W. Golden. 2012. Gene transfer in Leptolyngbya sp. strain BL0902, a cyanobacterium suitable for production of biomass and bioproducts. PLoS ONE 7:e30901. PMCID: PMC3265524. http://www.ncbi.nlm.nih.gov/pubmed/22292073 Flaherty, B. L., F. Van Nieuwerburgh, S. R. Head, and J. W. Golden. 2011. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics, 12:332. Saha, S. K., and J. W. Golden. 2011. Overexpression of pknE blocks heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21421755 Mella-Herrera, R. A., M. R. Neunuebel, K. Kumar, S. K. Saha, and J. W. Golden. 2011. The sigE gene is required for normal expression of heterocyst-specific genes in Anabaena sp. strain PCC 7120. J. Bacteriol. 193:1823-1832. 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21317330 Mella-Herrera, R. A., M. R. Neunuebel, and J. W. Golden. 2011. Anabaena sp. strain PCC 7120 conR contains a LytR-CpsA-Psr domain, is developmentally regulated, and is essential for diazotrophic growth and heterocyst morphogenesis. Microbiology 157:617-626. 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21088107 Kumar, K., R. A. Mella, and J. W. Golden. 2010. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2009. 2:a000315. Neunuebel, M. R. and J. W. Golden. 2008. The Anabaena sp. strain PCC 7120 gene all2874 encodes a diguanylate cyclase and is required for normal heterocyst development under high-light growth conditions. J. Bacteriol. 190:6829-6836. Aldea, M. R., K. Kumar, and J. W. Golden, 2008. Heterocyst development and pattern formation, p. 75-90, In S. C. Winans and B. L. Bassler (eds.), Chemical Communication Among Microbes. ASM Press, Washington, D.C. Aldea, M. R., R. A. Mella, and J. W. Golden, 2007. Sigma factor genes sigC, sigE, and sigG are upregulated in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 189:8392-8396. Wu, X., D. W. Lee, R. A. Mella, and J. W. Golden. 2007. The Anabaena sp. strain PCC 7120 asr1734 gene encodes a negative regulator of heterocyst development. Mol. Microbiol. 64:782-794. Carrasco, C. D., S. D. Holliday, A. Hansel, P. Lindblad, and J. W. Golden. 2005. Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J. Bacteriol. 187: 6031-6038. Liu, T., J. W. Golden, and D. P. Giedroc. 2005. A Zinc(II)/Lead(II)/Cadmium(II)-Inducible Operon from the Cyanobacterium Anabaena Is Regulated by AztR, an alpha3N ArsR/SmtB Metalloregulator. Biochemistry 44:8673-8683. Khudyakov, I. Y., and J. W. Golden. 2004. Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation. Proc. Natl. Acad. Sci. USA 101:16040-16045.

推荐链接
down
wechat
bug