近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
(1) Yawei Lv, Qijun Huang, Sheng Chang*, Hao Wang, Jin He, Cun Wei, Anqi Liu, Shizhuo Ye, Wei Wang, Interface Coupling as a Crucial Factor for Spatial Localization of Electronic States in a Heterojunction of Graphene Nanoribbons, Physical Review Applied, 2019, 11(2): 024026 (2) Yawei Lv, Wenjing Qin, Chunlan Wang, Lei Liao*, Xingqiang Liu*, Recent Advances in Low-Dimensional Heterojunction-Based Tunnel Field Effect Transistors, Advanced Electronic Materials, 2019, 5(1): 1800569 (3) Yawei Lv, Shizhuo Ye, Hao Wang, Jin He, Qijun Huang, Sheng Chang*, Strain Engineering of Chevron Graphene Nanoribbons, Journal of Applied Physics, 2019, 125(8): 082501 (4) Yawei Lv, Qijun Huang, Sheng Chang*, Hao Wang, Jin He, Anqi Liu, Shizhuo Ye, Wei Wang, Activating Impurity Effect in Edge Nitrogen-Doped Chevron Graphene Nanoribbons, Journal of Physics Communications, 2018, 2(4): 045028 (5) Yawei Lv, Anqi Liu, Qijun Huang, Sheng Chang*, Wenjing Qin, Shizhuo Ye, Hao Wang, Jin He, Restraining Strategy of the Stone–Wales Defect Effect on Graphene Nanoribbon MOSFETs, IEEE Electron Device Letters, 2018, 39(7): 1092-1095 (6) Yawei Lv, Qijun Huang, Sheng Chang*, Hao Wang, Jin He, Highly Sensitive Bilayer Phosphorene Nanoribbon Pressure Sensor Based on the Energy Gap Modulation Mechanism: A Theoretical Study, IEEE Electron Device Letters, 2018, 38(9): 1313-1316 (7) Yawei Lv, Wenjing Qin, Qijun Huang, Sheng Chang*, Hao Wang, Jin He, Graphene Nanoribbon Tunnel Field-Effect Transistor via Segmented Edge Saturation, IEEE Transactions on Electron Devices, 2017, 64(6): 2694-2701 (8) Yawei Lv, Sheng Chang*, Qijun Huang, Hao Wang, Jin He, Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport, Scientific Reports, 2016, 6: 38009 (9) Yawei Lv, Sheng Chang*, Hao Wang, Jin He, Qijun Huang, Energy Gap Tunable Graphene Antidot Nanoribbon MOSFET: A Uniform Multiscale Analysis from Band Structure to Transport Properties, Carbon, 2016, 101: 143-151 (10) Yawei Lv, Qijun Huang, Sheng Chang*, Hao Wang, Jin He, Novel Strategy of Edge Saturation Hamiltonian for Graphene Nanoribbon Devices, IEEE Transactions on Electron Devices, 2016, 63(11): 4514-4520 (11) Yawei Lv, Qijun Huang, Hao Wang*, Sheng Chang, Jin He, A Numerical Study on Graphene Nanoribbon Heterojunction Dual-Material Gate Tunnel FET, IEEE Electron Device Letters, 2016, 37(10): 1354-1357 (12) Yawei Lv, Hao Wang*, Sheng Chang, Jin He, Qijun Huang, Band Structure Effects in Extremely Scaled Silicon Nanowire MOSFETs With Different Cross Section Shapes, IEEE Transactions on Electron Devices, 2015, 62(11): 3547-3553 (13) Yawei Lv., Hao Wang, Sheng Chang, Zhihao Yu, Jin He, Qijun Huang, Band Engineering of Graphene Nanomesh Field Effect Transistor under Multiscale Simulation Framework, 16th Annual Conference of the Chinese Society of Micro-Nano Technology, Chengdu, P.R. China, 2014.08.31-09.03 (14) Shizhuo Ye, Ruohua Zhu, Qijun Huang, Jin He, Hao Wang, Yawei Lv, Sheng Chang*, A Transport Isolation by Orbital Hybridization Transformation Toward Graphene Nanoribbon-Based Nanostructure Integration, Nanotechnology, 2018, 29(45): 455704 (15) Wenjing Qin, Feng Ren*, Russell P. Doerner, Guo Wei, Yawei Lv, Sheng Chang, Ming Tang, Huiqiu Deng, Changzhong Jiang, Yongqiang Wang*, Nanochannel Structures in W Enhance Radiation Tolerance, Acta Materialia, 2018, 153: 147-155 (16) Ji Zhang, Yawei Lv, Sheng Chang*, Hao Wang, Jin He, Qijun Huang, Prior Knowledge Input Neural Network Method for GFET Description, Journal of Computational Electronics, 2016, 15(3): 911-918 (17) Sheng Chang*, Lei Zhao, Yawei Lv, Hao Wang, Qijun Huang, Jin He, Negative Differential Resistance in Graphene Nanoribbon Superlattice Field-effect Transistors, Micro & Nano Letters, 2015, 10(8): 400-403