当前位置: X-MOL首页全球导师 海外导师 › Tang, Junwang

个人简介

Education Other Postgraduate qualification (including professional), Certificate in Learning and Teaching in HE Part 1 2010 Chinese Academy of Sciences Doctorate, Doctor of Philosophy 2001 Chinese Academy of Sciences Other higher degree, Master of Science 1998 Northeastern University First Degree, Bachelor of Science 1995 Biography Prof. Tang obtained his PhD in Physical Chemistry (Heterogeneous Catalysis) from the State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, China in 2001. After that, he was appointed as a NIMS researcher and JSPS fellow at the National Institute for Materials Science (NIMS) Japan, working on solar fuels synthesis and photocatalytic organic contaminant decomposition. In 2005 he moved to the Department of Chemistry, Imperial College London as a senior Research Associate focusing on mechanistic study on photocatalysis by the state of the art time-resolved spectroscopies. In 2009, Dr. Tang joined the Department of Chemical Engineering at UCL as a Lecturer (tenure) and an Honorary Lecturer in the Department of Chemistry, Imperial College London, then promoted to Senior Lecturer, Reader and Full Professor of Materials Chemistry and Engineering. He was also elected as a Member of Academia Europaea (2021), Fellow of European Academy of Sciences (2020), Fellow of Royal Society of Chemistry(2014).

研究领域

Photocatalytic Hydrogenation and Oxidation: Mimicking natural green plants, the aim of this project is to activate the small and stable molecules, eg. methane upgrade, water to H2 fuel, nitrogen to ammonia, CO2 conversion to fuels and benzene to high value chemicals. The core of the project is the development of efficient inorganic and in particular polymer semiconductor photocatalysts with controllable structures and morphology to facilitate charge separation and utilisation with an aim to manufacture high value chemicals by a green or zero-carbon technology operated under ambient conditions. Fundamental Understanding of Photocatalysis: Semiconductor development for photocatalysis has to date been largely empirical, with only limited studies of the underlying mechanisms. My group in parallel devotes substantial effort into mechanistic studies to explore the basic photochemical processes by time-resolved spectroscopies (eg. transient absorption, scattering spectra, transient IR and Raman spectra etc ), which are fed back to guide material modification for efficient photocatalysis. Functional- & Bio-materials: The research is aimed at utilising the diverse technologies in my group, e.g. sol-gel, chemical deposition, electrochemical, hydrothermal and in particular microwave-intensified approaches to prepare biomaterials with controlled pore size and morphology, as well as grow films on different substrates for use in energy, drug delivery and tissue engineering. Microwave Catalysis: The research work couples microwave irradiation with heterogeneous catalysis by using special reactors and a novel microwave-absorbing (MW) catalysts in a home-built fluidic system. This enables both microwave heating and microwave discharge assisted heterogeneous catalysis and the typical project in the group is microwave catalytic recycling of the plastics.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Qi, Y., Zhang, J., Zhang, L., Zhou, X., Li, W., Cui, J., ...Shen, J. (2023). 3D macro/mesoporous highly reproducible amino-functionalized covalent organic framework nanospheres for fat-rich foodstuffs pretreatment in nontargeted analysis. Chemical Engineering Journal, 454 140319. doi:10.1016/j.cej.2022.140319 Sun, L., Zhang, Z., Bian, J., Bai, F., Su, H., Li, Z., ...Bai, L. (2023). A Z-scheme Heterojunctional Photocatalyst Engineered with Spatially Separated Dual Redox Sites for Selective CO2 Reduction with Water: Insight by In situ µs-transient Absorption Spectra. Advanced Materials, doi:10.1002/adma.202300064 Shoneye, A., Jiao, H., Tang, J. (2023). Bimetallic FeOx–MOx Loaded TiO2 (M = Cu, Co) Nanocomposite Photocatalysts for Complete Mineralization of Herbicides. The Journal of Physical Chemistry C, doi:10.1021/acs.jpcc.2c06796 Wang, C., Xu, Y., Tang, J. (2023). Catalytic methane removal to mitigate its environmental effect. Science China Chemistry, doi:10.1007/s11426-022-1487-8 Shen, R., Li, N., Qin, C., Li, X., Zhang, P., Li, X., Tang, J. (2023). Heteroatom- and Bonded Z-Scheme Channels-Modulated Ultrafast Carrier Dynamics and Exciton Dissociation in Covalent Triazine Frameworks for Efficient Photocatalytic Hydrogen Evolution. Advanced Functional Materials, doi:10.1002/adfm.202301463 Wang, H., Qi, H., Sun, X., Jia, S., Li, X., Miao, T.J., ...Liu, X. (2023). High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu-TiO2 photocatalysts.. Nature Materials, doi:10.1038/s41563-023-01519-y Xiong, L., Qi, H., Zhang, S., Zhang, L., Liu, X., Wang, A., Tang, J. (2023). Highly selective transformation of biomass derivatives to valuable chemicals by single-atom photocatalyst Ni/TiO2.. Advanced Materials, e2209646. doi:10.1002/adma.202209646 Liu, Y., Sun, J., Huang, H., Bai, L., Zhao, X., Qu, B., ...Jing, L. (2023). Improving CO2 photoconversion with ionic liquid and Co single atoms. Nature Communications, 14 (1), doi:10.1038/s41467-023-36980-5 Luo, L., Han, X., Wang, K., Xu, Y., Xiong, L., Ma, J., ...Tang, J. (2023). Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+. Nature Communications, 14 doi:10.1038/s41467-023-38334-7 Yu, L., Wang, H., Huang, Q., Liu, H., Chen, Q., Yuan, B., ...Zhao, D. (2023). One-pot microwave synthesized high-performance BiVO4/InVO4 heterojunction for photocatalytic reduction of Cr6+. Separation and Purification Technology, 310 123143. doi:10.1016/j.seppur.2023.123143 Wang, K., Luo, L., Wang, C., Tang, J. (2023). Photocatalytic methane activation by dual reaction sites co-modified WO₃. Chinese Journal of Catalysis, 46 103-112. doi:10.1016/S1872-2067(22)64169-X Wu, H., Zhang, L., Qu, S., Du, A., Tang, J., Ng, Y.H. (2023). Polaron-Mediated Transport in BiVO4 Photoanodes for Solar Water Oxidation. ACS Energy Letters, 2177-2184. doi:10.1021/acsenergylett.3c00465 Guo, Q., Zhao, Q., Crespo-Otero, R., Di Tommaso, D., Tang, J., Dimitrov, S.D., ...Jorge Sobrido, A.B. (2023). Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?. Journal of the American Chemical Society, doi:10.1021/jacs.2c09974 An, X., Wei, T., Ding, P., Liu, L.-.M., Xiong, L., Tang, J., ...Qu, J. (2023). Sodium-Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency.. Journal of the American Chemical Society, doi:10.1021/jacs.2c10690 Ruan, Q., Xi, X., Yan, B., Kong, L., Jiang, C., Tang, J., Sun, Z.M. (2023). Stored photoelectrons in a faradaic junction for decoupled solar hydrogen production in the dark. Chem, doi:10.1016/j.chempr.2023.03.001 Wang, C., Li, X., Ren, Y., Jiao, H., Wang, F.R., Tang, J. (2023). Synergy of Ag and AgBr in a Pressurized Flow Reactor for Selective Photocatalytic Oxidative Coupling of Methane. ACS Catalysis, 13 3768-3774. doi:10.1021/acscatal.2c06093 Luo, L., Gong, Z., Xu, Y., Ma, J., Liu, H., Xing, J., Tang, J. (2022). Binary Au-Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature. Journal of the American Chemical Society, doi:10.1021/jacs.1c09141 Ma, J., Miao, T.J., Tang, J. (2022). Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies. Chemical Society Reviews, doi:10.1039/d1cs01164b Zhang, W., Tian, M., Jiao, H., Jiang, H.Y., Tang, J. (2022). Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting. Chinese Journal of Catalysis, 43 (9), 2321-2331. doi:10.1016/S1872-2067(21)63927-X Yang, F., Yu, J., Wang, Q., Wang, C., Du, Y., Liu, Z., ...Tang, J. (2022). Enhancing the Adsorption Performance of 2-Methylisoborneol by Activated Carbon by Promoting Hydrophobic Effects. ACS ES and T Water, doi:10.1021/acsestwater.2c00300 Zhang, W., Bai, Y., Tian, M., Liu, Y.G., Hou, J., Li, C., ...Tang, J. (2022). Improvement of the Photoelectrochemical Stability of Cu2O Photocathode by Ph—CΞC—Cu Grafting. Advanced Materials Interfaces, 2201380. doi:10.1002/admi.202201380 Wang, Y., Chen, E., Tang, J. (2022). Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catalysis, 12 (12), 7300-7316. doi:10.1021/acscatal.2c01012 Jiao, H., Wang, C., Xiong, L., Tang, J. (2022). Insights on Carbon Neutrality by Photocatalytic Conversion of Small Molecules into Value-Added Chemicals or Fuels. Accounts of Materials Research, doi:10.1021/accountsmr.2c00095 Li, X., Wang, C., Tang, J. (2022). Methane transformation by photocatalysis. Nature Reviews Materials, doi:10.1038/s41578-022-00422-3 Panariello, L., Besenhard, M.O., Damilos, S., Sergides, A., Sebastian, V., Irusta, S., ...Gavriilidis, A. (2022). Microwave-assisted flow synthesis of multicore iron oxide nanoparticles. Chemical Engineering and Processing - Process Intensification, 182 doi:10.1016/j.cep.2022.109198 Jiao, H., Yang, J., Li, X., Wang, C., Tang, J. (2022). On-demand continuous H-2 release by methanol dehydrogenation and reforming via photocatalysis in a membrane reactor. Green Chemistry, doi:10.1039/d2gc01553f Gong, Z., Luo, L., Wang, C., Tang, J. (2022). Photocatalytic Methane Conversion to C1 Oxygenates over Palladium and Oxygen Vacancies Co-Decorated TiO_{2}. Solar RRL, doi:10.1002/solr.202200335 Thangamuthu, M., Ruan, Q., Ohemeng, P.O., Luo, B., Jing, D., Godin, R., Tang, J. (2022). Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chemical Reviews, doi:10.1021/acs.chemrev.1c00971 Tang, J., Wang, L., Godin, R., Marschall, R. (2022). Preface to special column on renewable fuel synthesis by photocatalysis and photoelectrocatalysis. CHINESE JOURNAL OF CATALYSIS, 43 (9), 2271-2272. doi:10.1016/S1872-2067(22)64147-0 Shoneye, A., Sen Chang, J., Chong, M.N., Tang, J. (2022). Recent progress in photocatalytic degradation of chlorinated phenols and reduction of heavy metal ions in water by TiO₂-based catalysts. International Materials Reviews, doi:10.1080/09506608.2021.1891368 Thangamuthu, M., Thottungal Valappu, R., Martin, O., Tang, J. (2022). Review—Origin and Promotional Effects of Plasmonics in Photocatalysis. Journal of The Electrochemical Society, doi:10.1149/1945-7111/ac5c97 Wang, H., Thangamuthu, M., Wu, Z., Yang, J., Yuan, H., Tang, J. (2022). Self-assembled sulphur doped carbon nitride for photocatalytic water reforming of methanol. Chemical Engineering Journal, 445 doi:10.1016/j.cej.2022.136790 Zhang, Y., Zhao, J., Wang, H., Xiao, B., Zhang, W., Zhao, X., ...Guo, Y. (2022). Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56. Nature Communications, 13 (1), doi:10.1038/s41467-021-27698-3 Zhang, Y., Zhao, J., Wang, H., Xiao, B., Zhang, W., Zhao, X., ...Guo, Y. (2022). Single-atom Cu anchored catalysts for photocatalytic renewable H-2 production with a quantum efficiency of 56% (vol 13, 58, 2022). NATURE COMMUNICATIONS, 13 (1), doi:10.1038/s41467-022-29799-z Fu, C., Li, F., Yang, J., Xie, J., Zhang, Y., Sun, X., ...Tang, J. (2022). Spontaneous Bulk-Surface Charge Separation of TiO2-{001} Nanocrystals Leads to High Activity in Photocatalytic Methane Combustion. ACS Catalysis, 6457-6463. doi:10.1021/acscatal.2c01706 Bian, J., Zhang, Z., Liu, Y., Chen, E., Tang, J., Jing, L. (2022). Strategies and reaction systems for solar-driven CO2 reduction by water. Carbon Neutrality, 1 (1), doi:10.1007/s43979-022-00006-8 Luo, L., Fu, L., Liu, H., Xu, Y., Xing, J., Chang, C.-.R., ...Tang, J. (2022). Synergy of Pd atoms and oxygen vacancies on In₂O₃ for methane conversion under visible light. Nature Communications, 13 doi:10.1038/s41467-022-30434-0 Yang, Q., Li, X., Tang, J. (2022). Tuning selectivity among acetalization, pinacol coupling, and hydrogenation reactions of benzaldehyde by catalytic and photochemical pathways at room temperature. Materials Today Energy, 23 doi:10.1016/j.mtener.2021.100890 Li, D., Zhao, Y., Zhou, C., Zhang, L.P., Tang, J., Zhang, T. (2022). Unveiling the critical role of TiO2-supported atomically dispersed Cu species for enhanced photofixation of N2 to nitrate. Fundamental Research, doi:10.1016/j.fmre.2022.05.025 Luo, L., Wang, K., Gong, Z., Zhu, H., Ma, J., Xiong, L., Tang, J. (2021). Bridging-nitrogen defects modified graphitic carbon nitride nanosheet for boosted photocatalytic hydrogen production. International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.2021.05.197 Jiang, C., Yang, J., Zhao, T., Xiong, L., Guo, Z.X., Ren, Y., ...Tang, J. (2021). Co3+-O-V4+ cluster in CoVOx nanorods for efficient and stable electrochemical oxygen evolution. Applied Catalysis B: Environmental, 282 doi:10.1016/j.apcatb.2020.119571 Jiang, C., Yang, J., Han, X., Qi, H., Su, M., Zhao, D., ...Li, J. (2021). Crystallinity-Modulated Co_{2-x}V_{x}O_{4} Nanoplates for Efficient Electrochemical Water Oxidation. ACS Catalysis, 14884-14891. doi:10.1021/acscatal.1c04618 Bayazit, M.K., Xiong, L., Jiang, C., Moniz, S.J.A., White, E., Shaffer, M.S.P., Tang, J. (2021). Defect-Free Single-Layer Graphene by 10 s Microwave Solid Exfoliation and Its Application for Catalytic Water Splitting. ACS Applied Materials and Interfaces, doi:10.1021/acsami.1c03906 Wang, Y., Godin, R., Durrant, J.R., Tang, J. (2021). Efficient Hole Trapping in Carbon Dot/Oxygen‐Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO 2 under Neutral Conditions. Angewandte Chemie, 133 (38), 20979-20984. doi:10.1002/ange.202105570 Wang, Y., Godin, R., Durrant, J., Tang, J. (2021). Efficient Hole Trapping in Carbon Dot/Oxygen-Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO2 under Neutral Conditions.. Angewandte Chemie International Edition, doi:10.1002/anie.202105570 Li, N., Li, X., Pan, R., Cheng, M., Guan, J., Zhou, J., ...Jing, D. (2021). Efficient Photocatalytic CO2 Reformation of Methane on Ru/La-g-C3N4 by Promoting Charge Transfer and CO2 Activation. CHEMPHOTOCHEM, doi:10.1002/cptc.202100020 Bian, J., Zhang, Z., Feng, J., Thangamuthu, M., Yang, F., Sun, L., ...Lin, Z. (2021). Energy Platform for Directed Charge Transfer in the Cascade Z-Scheme Heterojunction: CO2 Photoreduction without a Cocatalyst. Angewandte Chemie: International Edition, 60 (38), 20906-20914. doi:10.1002/anie.202106929 Zhang, M., Wang, Y., Liu, J., Thangamuthu, M., Yue, Y., Yan, Z., ...Guan, S. (2021). Facile one-step synthesis and enhanced photocatalytic activity of a WC/ferroelectric nanocomposite. Journal of Materials Chemistry A, doi:10.1039/d1ta04131b Li, J., Xiong, L., Luo, B., Jing, D., Cao, J., Tang, J. (2021). Hollow Carbon Sphere-Modified Graphitic Carbon Nitride for Efficient Photocatalytic H₂ Production. Chemistry - A European Journal, doi:10.1002/chem.202102330 Xu, K., Chatzitakis, A., Backe, P.H., Ruan, Q., Tang, J., Rise, F., ...Norby, T. (2021). In situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell. Applied Catalysis B: Environmental, 296 doi:10.1016/j.apcatb.2021.120349 Miao, T.J., Wang, C., Xiong, L., Li, X., Xie, J., Tang, J. (2021). In Situ Investigation of Charge Performance in Anatase TiO2 Powder for Methane Conversion by Vis–NIR Spectroscopy. ACS Catalysis, 11 (13), 8226-8238. doi:10.1021/acscatal.1c01998 Gu, Z., An, X., Liu, R., Xiong, L., Tang, J., Hu, C., ...Qu, J. (2021). Interface-modulated nanojunction and microfluidic platform for photoelectrocatalytic chemicals upgrading. Applied Catalysis B: Environmental, 282 doi:10.1016/j.apcatb.2020.119541 Wu, H., Kong, X.Y., Wen, X., Chai, S., Lovell, E.C., Tang, J., Ng, Y.H. (2021). Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Long‐lived Charges Applied in Selective Photocatalytic CO 2 Reduction to CH 4. Angewandte Chemie, 133 (15), 8536-8540. doi:10.1002/ange.202015735 Wu, H., Kong, X.Y., Wen, X., Chai, S.-.P., Lovell, E.C., Tang, J., Ng, Y.H. (2021). Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4.. Angew Chem Int Ed Engl, doi:10.1002/anie.202015735 Geng, J., Tang, J., Cai, W., Wang, Y., Jing, D., Guo, L. (2021). Periodical oscillation of particle-laden laminar flow within a tubular photocatalytic hydrogen production reactor predicted by discrete element method. International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.2020.08.066 Qian, J., Zhao, S., Dang, W., Liao, Y., Zhang, W., Wang, H., ...Tang, J. (2021). Photocatalytic Nitrogen Reduction by Ti₃C₂ MXene Derived Oxygen Vacancy‐Rich C/TiO₂. Advanced Sustainable Systems, doi:10.1002/adsu.202000282 Han, Q., Jiao, H., Xiong, L., Tang, J. (2021). Progress and challenges in photocatalytic ammonia synthesis. Materials Advances, 2 (2), 564-581. doi:10.1039/d0ma00590h Han, Q., Wu, C., Jiao, H., Xu, R., Wang, Y., Xie, J., ...Tang, J. (2021). Rational Design of High‐Concentration Ti³⁺ in Porous Carbon‐Doped TiO₂ Nanosheets for Efficient Photocatalytic Ammonia Synthesis. Advanced Materials, doi:10.1002/adma.202008180 Zhao, Y., Wu, F., Miao, Y., Zhou, C., Xu, N., Shi, R., ...Zhang, T. (2021). Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie International Edition, doi:10.1002/anie.202108769 Fu, C., Li, F., Zhang, J., Li, D., Qian, K., Liu, Y., ...Gong, X.-.Q. (2021). Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO2 Nanocrystals. Angew Chem Int Ed Engl, doi:10.1002/anie.202014037 Xiong, L., Tang, J. (2021). Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances. Advanced Energy Materials, doi:10.1002/aenm.202003216 Li, J., Li, F., Yang, Q., Wang, S., Sun, H., Yang, Q., ...Liu, S. (2021). Tailoring collaborative N–O functionalities of graphene oxide for enhanced selective oxidation of benzyl alcohol. Carbon, 182 715-724. doi:10.1016/j.carbon.2021.06.062 Luo, L., Gong, Z., Ma, J., Wang, K., Zhu, H., Li, K., ...Tang, J. (2021). Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water. Applied Catalysis B: Environmental, 284 doi:10.1016/j.apcatb.2020.119742 Liao, Y., Qian, J., Xie, G., Han, Q., Dang, W., Wang, Y., ...Zhang, W. (2020). 2D-layered Ti₃C₂ MXenes for promoted synthesis of NH₃ on P25 photocatalysts. Applied Catalysis B: Environmental, 273 doi:10.1016/j.apcatb.2020.119054 Kong, D., Han, X., Shevlin, S.A., Windle, C., Warner, J.H., Guo, Z.-.X., Tang, J. (2020). A Metal-Free Oxygenated Covalent Triazine 2-D Photocatalyst Works Effectively from the Ultraviolet to Near-Infrared Spectrum for Water Oxidation Apart from Water Reduction. ACS Applied Energy Materials, doi:10.1021/acsaem.0c01153 Lau, C.C., Al Qaysi, M., Owji, N., Bayazit, M.K., Xie, J., Knowles, J.C., Tang, J. (2020). Advanced biocomposites of poly(glycerol sebacate) and β-tricalcium phosphate by in situ microwave synthesis for bioapplication. Materials Today Advances, 5 doi:10.1016/j.mtadv.2019.100023 Geng, J., Tang, J., Wang, Y., Huang, Z., Jing, D., Guo, L. (2020). Attenuated Periodical Oscillation Characteristics in a Nanoscale Particle-Laden Laminar Flow. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 59 (16), 8018-8027. doi:10.1021/acs.iecr.0c00405 Miao, T., Tang, J. (2020). Characterisation of charge carrier behaviour in photocatalysis using Transient Absorption Spectroscopy. Journal of Chemical Physics, Windle, C.D., Wieczorek, A., Xiong, L., Sachs, M., Bozal-Ginesta, C., Cha, H., ...Tang, J. (2020). Covalent grafting of molecular catalysts on C₄NₓH_{y} as robust, efficient and well-defined photocatalysts for solar fuel synthesis. Chemical Science, doi:10.1039/d0sc02986f Wang, H., Wang, H., Wang, Z., Tang, L., Zeng, G., Xu, P., ...Li, X. (2020). Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews, doi:10.1039/d0cs00278j Wang, Y., Vogel, A., Sachs, M., Sprick, R.S., Wilbraham, L., Moniz, S.J.A., ...Cooper, A.I. (2020). Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts (vol 4, pg 746, 2019). NATURE ENERGY, 5 (8), 633. doi:10.1038/s41560-020-0651-4 Luo, L., Ma, J., Zhu, H., Tang, J. (2020). Embedded carbon in a carbon nitride hollow sphere for enhanced charge separation and photocatalytic water splitting.. Nanoscale, doi:10.1039/d0nr00226g Allison-Logan, S., Fu, Q., Sun, Y., Liu, M., Xie, J., Tang, J., Qiao, G.G. (2020). From UV to NIR: A full spectrum metal-free photocatalyst for efficient polymer synthesis in aqueous conditions. Angewandte Chemie - International Edition, doi:10.1002/anie.202007196 Allison‐Logan, S., Fu, Q., Sun, Y., Liu, M., Xie, J., Tang, J., Qiao, G. (2020). From UV to NIR: A Full-Spectrum Metal-Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angewandte Chemie, doi:10.1002/ange.202007196 Shoneye, A., Tang, J. (2020). Highly dispersed FeOOH to enhance photocatalytic activity of TiO2 for complete mineralisation of herbicides. Applied Surface Science, 511 doi:10.1016/j.apsusc.2020.145479 Ruan, Q., Miao, T., Wang, H., Tang, J. (2020). Insight on Shallow Trap States-Introduced Photocathodic Performance in n-Type Polymer Photocatalysts (vol 142, pg 2795, 2020). JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 142 (42), 18277-18278. doi:10.1021/jacs.0c10401 Ruan, Q., Miao, T., Wang, H., Tang, J. (2020). Insight on Shallow Trap States-Introduced Photocathodic Performance in n-Type Polymer Photocatalysts.. Journal of the American Chemical Society, doi:10.1021/jacs.9b10476 Jing, D., Sun, L., Jin, J., Thangamuthu, M., Tang, J. (2020). Magneto-optical transmission in magnetic nanoparticle suspensions for different optical applications: A review. Journal of Physics D: Applied Physics, 54 (1), doi:10.1088/1361-6463/abb8fd Wu, C., Yu, G., Yin, Y., Wang, Y., Chen, L., Han, Q., ...Wang, B. (2020). Mesoporous Polymeric Cyanamide-Triazole-Heptazine Photocatalysts for Highly-Efficient Water Splitting.. Small, e2003162. doi:10.1002/smll.202003162 Li, C.B., Chu, Y., Xie, P., Xiong, L., Wang, N., Wang, H., Tang, J. (2020). Molecular Cobalt Catalysts Grafted onto Polymers for Efficient Hydrogen Generation Cathodes. Solar RRL, doi:10.1002/solr.202000281 Li, X., Xie, J., Rao, H., Wang, C., Tang, J. (2020). Platinum‐ and CuOₓ-Decorated TiO₂ Photocatalyst for Oxidative Coupling of Methane to C₂ Hydrocarbons in a Flow Reactor. Angewandte Chemie, doi:10.1002/ange.202007557 Li, X., Xie, J., Rao, H., Wang, C., Tang, J. (2020). Pt and CuOx decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor.. Angew Chem Int Ed Engl, doi:10.1002/anie.202007557 Lim, K.R.G., Handoko, A.D., Nemani, S.K., Wyatt, B., Jiang, H.-.Y., Tang, J., ...Seh, Z.W. (2020). Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion.. ACS Nano, doi:10.1021/acsnano.0c05482 Wang, H., Li, X., Ruan, Q., Tang, J. (2020). Ru and RuOx decorated carbon nitride for efficient ammonia photosynthesis.. Nanoscale, doi:10.1039/d0nr02527e Zhang, Z., Qiu, C., Xu, Y., Han, Q., Tang, J., Loh, K.P., Su, C. (2020). Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nature Communications, 11 (1), doi:10.1038/s41467-020-18458-w Kong, D., Xie, J., Guo, Z., Yang, D., Tang, J. (2020). Stable Complete Water Splitting by Covalent Triazine-based Framework CTF-0. ChemCatChem, doi:10.1002/cctc.201902396 Yaw, C.S., Tang, J., Soh, A.K., Chong, M.N. (2020). Synergistic effects of dual-electrocatalyst FeOOH/NiOOH thin films as effective surface photogenerated hole extractors on a novel hierarchical heterojunction photoanode structure for solar-driven photoelectrochemical water splitting. Chemical Engineering Journal, 380 doi:10.1016/j.cej.2019.122501 Guo, Q., Luo, H., Zhang, J., Ruan, Q., Prakash Periasamy, A., Fang, Y., ...Tang, J. (2020). The role of carbon dots - derived underlayer in hematite photoanodes.. Nanoscale, doi:10.1039/d0nr06139e Yaw, C.S., Ng, W.C., Ruan, Q., Tang, J., Soh, A.K., Chong, M.N. (2020). Tuning of reduced graphene oxide thin film as an efficient electron conductive interlayer in a proven heterojunction photoanode for solar-driven photoelectrochemical water splitting. Journal of Alloys and Compounds, doi:10.1016/j.jallcom.2019.152721 Zhao, Y., Zhang, S., Shi, R., Waterhouse, G.I.N., Tang, J., Zhang, T. (2020). Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Materials Today, doi:10.1016/j.mattod.2019.10.022 Wang, Y., Liu, X., Han, X., Godin, R., Chen, J., Zhou, W., ...Shevlin, S.A. (2020). Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water.. Nat Commun, 11 (1), 2531. doi:10.1038/s41467-020-16227-3 Zhang, W., Ma, J., Xiong, L., Jiang, H.-.Y., Tang, J. (2020). Well-Crystallized alpha-FeOOH Cocatalysts Modified BiVO4 Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. ACS APPLIED ENERGY MATERIALS, 3 (6), 5927-5936. doi:10.1021/acsaem.0c00834 Yaw, C.S., Ruan, Q., Tang, J., Soh, A.K., Chong, M.N. (2019). A Type II n-n staggered orthorhombic V₂O₅/monoclinic clinobisvanite BiVO₄ heterojunction photoanode for photoelectrochemical water oxidation: Fabrication, characterisation and experimental validation. Chemical Engineering Journal, 364 177-185. doi:10.1016/j.cej.2019.01.179 Luo, L., Li, K., Zhang, A., Shi, H., Zhang, G., Ma, J., ...Guo, X. (2019). Controllable assembly of single/double-thin-shell g-C3N4 vesicles via a shape-selective solid-state templating method for efficient photocatalysis. JOURNAL OF MATERIALS CHEMISTRY A, 7 (30), 17815-17822. doi:10.1039/c9ta01521c Wang, Y., Vogel, A., Sachs, M., Sprick, R.S., Wilbraham, L., Moniz, S.J.A., ...Cooper, A.I. (2019). Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nature Energy, doi:10.1038/s41560-019-0456-5 Bian, J., Feng, J., Zhang, Z., Li, Z., Zhang, Y., Liu, Y., ...Xie, J. (2019). Dimension‐Matched Zinc Phthalocyanine/BiVO 4 Ultrathin Nanocomposites for CO 2 Reduction as Efficient Wide‐Visible‐Light‐Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie, 131 (32), 10989-10994. doi:10.1002/ange.201905274 Bian, J., Feng, J., Zhang, Z., Li, Z., Zhang, Y., Liu, Y., ...Xie, J. (2019). Dimension‐Matched Zinc Phthalocyanine/BiVO₄ Ultrathin Nanocomposites for CO₂ Reduction as Efficient Wide‐Visible‐Light‐Driven Photocatalysts via a Cascade Charge Transfer. Angewandte Chemie International Edition, doi:10.1002/anie.201905274 Damilos, S., Radhakrishnan, A.N.P., Dimitrakis, G., Tang, J., Gavriilidis, A. (2019). Experimental and computational investigation of heat transfer in a microwave-assisted flow system. Chemical Engineering and Processing: Process Intensification, doi:10.1016/j.cep.2019.107537 Wang, F., Yu, X., Ge, M., Wu, S., Guan, J., Tang, J., ...Ritchie, R.O. (2019). Facile self-assembly synthesis of γ-Fe2O3 /graphene oxide for enhanced photo-Fenton reaction. Environmental Pollution, 248 229-237. doi:10.1016/j.envpol.2019.01.018 Xu, K., Chatzitakis, A., Vøllestad, E., Ruan, Q., Tang, J., Norby, T. (2019). Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell. International Journal of Hydrogen Energy, 44 (2), 587-593. doi:10.1016/j.ijhydene.2018.11.030 Bian, J., Feng, J., Zhang, Z., Li, Z., Zhang, Y., Liu, Y., ...Xie, J. (2019). Innentitelbild: Dimension‐Matched Zinc Phthalocyanine/BiVO 4 Ultrathin Nanocomposites for CO 2 Reduction as Efficient Wide‐Visible‐Light‐Driven Photocatalysts via a Cascade Charge Transfer (Angew. Chem. 32/2019). Angewandte Chemie, 131 (32), 10878. doi:10.1002/ange.201908623 Bian, J., Feng, J., Zhang, Z., Li, Z., Zhang, Y., Liu, Y., ...Xie, J. (2019). Inside Cover: Dimension‐Matched Zinc Phthalocyanine/BiVO 4 Ultrathin Nanocomposites for CO 2 Reduction as Efficient Wide‐Visible‐Light‐Driven Photocatalysts via a Cascade Charge Transfer (Angew. Chem. Int. Ed. 32/2019). Angewandte Chemie International Edition, 58 (32), 10764. doi:10.1002/anie.201908623 Wang, M., Liu, Y., Li, D., Tang, J., Huang, W. (2019). Isoelectric point-controlled preferential photodeposition of platinum on Cu2O-TiO2 composite surfaces. Chinese Chemical Letters, doi:10.1016/j.cclet.2019.01.017 Ruan, Q., Bayazit, M.K., Kiran, V., Xie, J., Wang, Y., Tang, J. (2019). Key factors affecting photoelectrochemical performance of g-C₃N₄ polymer films. Chemical Communications, doi:10.1039/c9cc03084k Ching Lau, C., Kemal Bayazit, M., Reardon, P.J.T., Tang, J. (2019). Microwave Intensified Synthesis: Batch and Flow Chemistry.. Chem Rec, 19 (1), 172-187. doi:10.1002/tcr.201800121 Ho-Kimura, S., Williamson, B.A.D., Sathasivam, S., Moniz, S.J.A., He, G., Luo, W., ...Parkin, I.P. (2019). Origin of High-Efficiency Photoelectrochemical Water Splitting on Hematite/Functional Nanohybrid Metal Oxide Overlayer Photoanode after a Low Temperature Inert Gas Annealing Treatment. ACS Omega, 4 (1), 1449-1459. doi:10.1021/acsomega.8b02444 Li, C.B., Chu, Y., He, J., Xie, J., Liu, J., Wang, N., Tang, J. (2019). Photocatalytic Hydrogen Production Based on a Serial Metal-Salen Complexes and the Reaction Mechanism. ChemCatChem, doi:10.1002/cctc.201901656 Qiu, Y., Wen, Z., Jiang, C., Wu, X., Si, R., Bao, J., ...Guo, X. (2019). Rational Design of Atomic Layers of Pt Anchored on Mo₂C Nanorods for Efficient Hydrogen Evolution over a Wide pH Range. Small, doi:10.1002/smll.201900014 Jiang, C., Wu, J., Moniz, S.J.A., Guo, D., Tang, M., Jiang, Q., ...Zhang, T. (2019). Stabilization of GaAs photoanodes by in situ deposition of nickel-borate surface catalysts as hole trapping sites. Sustainable Energy and Fuels, 3 (3), 814-822. doi:10.1039/c8se00265g Fu, F., Shen, H., Sun, X., Xue, W., Shoneye, A., Ma, J., ...Tang, J. (2019). Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi₂MoO₆ for efficient photocatalysis. Applied Catalysis B: Environmental, 247 150-162. doi:10.1016/j.apcatb.2019.01.056 Kong, D., Han, X., Xie, J., Ruan, Q., Windle, C.D., Gadipelli, S., ...Tang, J. (2019). Tunable Covalent Triazine-Based Frameworks (CTF-0) for Visible-Light-Driven Hydrogen and Oxygen Generation from Water Splitting. ACS Catalysis, 7697-7707. doi:10.1021/acscatal.9b02195 Wang, Y., Silveri, F., Bayazit, M.K., Ruan, Q., Li, Y., Xie, J., ...Tang, J. (2018). Bandgap Engineering of Organic Semiconductors for Highly Efficient Photocatalytic Water Splitting. ADVANCED ENERGY MATERIALS, 8 (24), doi:10.1002/aenm.201801084 Tang, J., Lu, M., Fang, Q., Lu, F., Shao, R., Shen, J., ...Niu, D. (2018). Effects of hydrated sodium calcium aluminosilicate on growth performance, fatty liver, intestine morphology, and serum parameters of overfed geese. ANIMAL PRODUCTION SCIENCE, 58 (10), 1876-1884. doi:10.1071/AN16823 Shen, H., Xue, W., Fu, F., Sun, J., Zhen, Y., Wang, D., ...Tang, J. (2018). Efficient degradation of phenol and 4-nitrophenol by surface oxygen vacancies and plasmonic silver co-modified Bi2MoO6 photocatalysts.. Chemistry, doi:10.1002/chem.201804267 Gu, Z., Zhang, L., Wen, B., An, X., Lan, H., Liu, L.-.M., ...Tang, J. (2018). Efficient design principle for interfacial charge separation in hydrogen-intercalated nonstoichiometric oxides. NANO ENERGY, 53 887-897. doi:10.1016/j.nanoen.2018.09.019 Xie, J., Shevlin, S.A., Ruan, Q., Moniz, S.J.A., Liu, Y., Liu, X., ...Tang, J. (2018). Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy and Environmental Science, 11 (6), 1617-1624. doi:10.1039/c7ee02981k Xie, J., Jin, R., Li, A., Bi, Y., Ruan, Q., Deng, Y., ...Ma, D. (2018). Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. NATURE CATALYSIS, 1 (11), 889-896. doi:10.1038/s41929-018-0170-x Qu, Y., Sun, N., Humayun, M., Zada, A., Xie, Y., Tang, J., ...Fu, H. (2018). Improved visible-light activities of nanocrystalline CdS by coupling with ultrafine NbN with lattice matching for hydrogen evolution. SUSTAINABLE ENERGY & FUELS, 2 (3), 549-552. doi:10.1039/c7se00610a Huang, H., Feng, J., Fu, H., Zhang, B., Fang, T., Qian, Q., ...Li, Z. (2018). Improving solar water-splitting performance of LaTaON_{2} by bulk defect control and interface engineering. APPLIED CATALYSIS B-ENVIRONMENTAL, 226 111-116. doi:10.1016/j.apcatb.2017.12.033 Yuan, W., Cheng, L., An, Y., Lv, S., Wu, H., Fan, X., ...Tang, J. (2018). Laminated Hybrid Junction of Sulfur-Doped TiO2 and a Carbon Substrate Derived from Ti3C2 MXenes: Toward Highly Visible Light-Driven Photocatalytic Hydrogen Evolution. ADVANCED SCIENCE, 5 (6), doi:10.1002/advs.201700870 Wang, Y., Suzuki, H., Xie, J., Tomita, O., Martin, D.J., Higashi, M., ...Tang, J. (2018). Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems.. Chemical reviews, doi:10.1021/acs.chemrev.7b00286 Wei, T., Zhu, Y.-.N., Gu, Z., An, X., Liu, L.-.M., Wu, Y., ...Qu, J. (2018). Multi-electric field modulation for photocatalytic oxygen evolution: Enhanced charge separation by coupling oxygen vacancies with faceted heterostructures. NANO ENERGY, 51 764-773. doi:10.1016/j.nanoen.2018.07.018 Jiang, W., Ruan, Q., Xie, J., Chen, X., Zhu, Y., Tang, J. (2018). Oxygen-doped carbon nitride aerogel: A self-supported photocatalyst for solar-to-chemical energy conversion. APPLIED CATALYSIS B-ENVIRONMENTAL, 236 428-435. doi:10.1016/j.apcatb.2018.05.050 Kong, D., Zheng, Y., Kobielusz, M., Wang, Y., Bai, Z., Macyk, W., ...Tang, J. (2018). Recent advances in visible light-driven water oxidation and reduction in suspension systems. Materials Today, doi:10.1016/j.mattod.2018.04.009 Huang, W., Wu, Z., Tang, J., Wei, W.D., Guo, X. (2018). Surface chemistry connecting heterogeneous catalysis, photocatalysis and plasmonic catalysis. Chai, L., Yuan, W., Cui, X., Jiang, H., Tang, J., Guo, X. (2018). Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: towards high activity and stability for hydrogen evolution reaction over a wide pH range. RSC ADVANCES, 8 (47), 26871-26879. doi:10.1039/c8ra03909g Hu, K., Li, Z., Chen, S., Bian, J., Qu, Y., Tang, J., Jing, L. (2018). Synthesis of Silicate-Bridged Heterojunctional SnO2/BiVO4 Nanoplates as Efficient Photocatalysts to Convert CO2 and Degrade 2,4-Dichlorophenol. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 35 (1), doi:10.1002/ppsc.201700320 Tang, J., Fang, Q., Lu, M., Shao, R., Shen, J., Lu, L., Niu, D. (2018). The Effect of Hydrated Sodium Calcium Aluminosilicate on Fatty Liver and the Composition of the Intestinal Microbiota in Overfed Landes Geese. BRAZILIAN JOURNAL OF POULTRY SCIENCE, 20 (2), 393-402. doi:10.1590/1806-9061-2017-0499

推荐链接
down
wechat
bug