个人简介
教育简历: 1997年进入哈尔滨工业大学航天工程与力学系学习;2001年获得哈尔滨工业大学工学学士学位;2007年获得哈尔滨工业大学固体力学博士学位,硕士及博士研究生导师为王彪长江特聘教授,研究生期间主要针对固态光电功能材料固体力学、物理力学及相变临界特性等问题进行研究。 工作简历: 2007年受聘University Postdoctoral Fellow与固态电子专业C. H. Woo讲席教授(HKCityU&HKPolyU)合作主要从事微纳光电功能材料微结构模拟、特性分析及其器件应用研究;2009年受聘中山大学“百人计划”高层次引进人才任副教授、博士生导师;2010年任物理科学与工程技术学院教授、博士生导师;2014年12月-2015年9月受Y. G. Huang(Walter P. Murphy讲席教授/美国工程院院士/中国科学院外籍院士)邀请任美国西北大学工学院机械系Visiting Professor;2016年5月任物理学院副院长,2017年3月主持工作,2017年9月任物理学院院长;2018年2月任光电材料与技术国家重点实验室副主任。
研究领域
微纳尺度铁电/铁磁/多铁功能材料性能与应用研究;巨电阻及巨磁阻效应可控性机理及应用研究;微纳尺度功能材料光电效应可控性及应用研究;生物物理学及生物力学研究等。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]. Mechanical switching of ferroelectric domains beyond flexoelectricity, J. Mechanics. Physics. Solids., 111, 43 (2018). [2]. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics, Rep. Prog. Phys., 80, 086501 (2017). [3]. The dynamic conductance response and mechanics-modulated memristive behavior of the Azurin monolayer under cyclic loads, Phys. Chem. Chem. Phys., 19, 6757 (2017). [4]. A review of recent ab initio studies on strain-tunable conductivity in tunnel junctions with piezoelectric, ferroelectric and multiferroic barriers, Semicond. Sci. Tech., 32, 083006 (2017). [5]. Charge carrier transition in an ambipolar single-molecule junction Its mechanical-modulation and reversibility, npj Computational Materials, 2, 2 (2016). [6]. Phase transition characteristics in the conductivity of vanadium dioxide(A) nanowires size and surface effects, Phys. Chem. Chem. Phys., 18, 10262 (2016). [7]. Diverse interface effects on ferroelectricity and magnetoelectric coupling in asymmetric multiferroic tunnel junctions the role of the interfacial bonding structure, Phys. Chem. Chem. Phys., 18, 2850 (2016). [8]. Structure-dependent electrical conductivity of protein its differences between alpha-domain and beta-domain structures, Nanotechnology, 26, 125702 (2015) [9]. Utilizing mechanical loads and flexoelectricity to induce and control complicated evolution of domain patterns in ferroelectric nanofilms, J. Mechanics. Physics. Solids., 79, 108 (2015) [10]. Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: Effects of substrate, dislocations and local clamping force, Acta Materialia, 88, 41 (2015) [11]. Controllability of vortex domain structure in ferroelectric nanodot fruitful domain patterns and transformation paths, Scientific Reports, 4, 3946 (2014) [12]. Ab initio study on mechanical-bending-induced ferroelectric phase transition in ultrathin perovskite nanobelts, Acta Materialia, 76, 472 (2014) [13]. Theoretical methods of domain structures in ultrathin ferroelectric films: A Review, Materials 7, 6502 (2014) [14]. Ultrathin ferroelectric films growth, characterization, physics and applications, Materials 7, 6377 (2014) [15]. Mechanical characteristics of human red blood cell membrane changing due to C60 nano-particles infiltration, Phys. Chem. Chem. Phys., 15, 2473 (2013) [16]. Ab initio study on the size effect of symmetric and asymmetric ferroelectric tunnel junctions: A comprehensive picture with regard to the details of electrode/ferroelectric interfaces, J. Appl. Phys., 114, 064105 (2013) [17]. Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations, Phys. Chem. Chem. Phys., 14, 7051 (2012) [18]. Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition, Appl. Phys. Lett., 101, 062902 (2012) [19]. Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load, Scientific Reports, 2, 796 (2012) [20]. Phase field simulations of stress controlling the vortex domain structures in ferroelectric nanosheets, Appl. Phys. Lett., 100, 062901 (2012)