当前位置: X-MOL首页全球导师 国内导师 › 郭霞生

个人简介

江苏高邮人、博士、教授、博士生导师。2008年博士毕业于南京大学声学研究所,2010年进入物理学院工作,2011年受聘副教授,2019年晋升为教授,2015-2016在美国宾夕法尼亚州立大学进行访问学者研究。 在Phys. Rev. Appl.、Phys. Rev. E、Appl. Phys. Lett.、J. Acoust. Soc. Am.、IEEE Trans. Ultrason. Ferroelectr. Freq. Control等SCI源刊物发表论文80余篇,参编专著1部,获授权国家发明专利10余项(已对外转让5项)。主持国家自然科学基金4项(面上项目3项、青年项目1项)、江苏省自然科学基金面上项目1项,作为课题负责人参与国家自然科学基金重大设备研究专项1项,作为子课题负责人参与国家重点研发计划1项。获教育部自然科学一等奖1项(2017,排名4)、江苏省科学技术三等奖1项(2018,排名2)。2020获南京大学“魅力导师奖”。 IEEE会员、中国超声医学工程学会专委、超声生物效应学组常务委员、中国声学学会会员。 担任课程 1. 2021春:本科课程《信号与系统》(3学分),课程编号:12040030(声学专业本科核心课,开放选修) 2. 2021秋:本科课程《数字信号处理》(3学分),课程编号:12040040(声学专业本科核心课,开放选修)

研究领域

1. 声镊和超声微流控芯片:面向重大公共卫生问题中的诊断难题(如恶性肿瘤转移的早期诊断),基于声辐射力和声流等基本物理原理在粒子/细胞操控中的新应用,将MEMS技术和超声换能器集成,实现满足临床需求的新型医学诊断芯片。 2. 超声图像与信号处理:基于活体超声图像序列,研究生物体生理运动过程中的超声传播问题;探索对生物体进行新参量(温度、弹性等)成像的方法,基于信号处理原理进行算法开发,形成用于疾病诊断的超声新技术。基于该研究参与合作开发的新型聚焦超声一体化诊疗系统已进入临床试验阶段,用于原发性高血压的诊疗。 3. 超声操控神经:将超声波作用于神经模式生物秀丽线虫,研究操控生物体行为的方法;基于超声在时、频、空间域的不同分布,分析各类超声效应(波动、热、机械效应等)对线虫行为的影响;根据线虫与人类神经系统的同源性,探索超声治疗人类神经疾病的方案。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

G. Y. Xu#, J. J. Huang#, Y. Zhang#, L. Z. Xie, Z. Y. Ni, C. Y. Huang, G. Yao, J. Tu, X. S. Guo*, and D. Zhang*, Fourier Acoustical Tweezers: Synthesizing Arbitrary Radiation Force Using Non-Monochromatic Waves on Discrete-Frequency Basis, Phys. Rev. Appl., 2021, 15: 044037. Z. X. Liu, G. Y. Xu, Z. Y. Ni, X. Z. Chen, X. S. Guo*, J. Tu, and D. Zhang*, Theory of acoustophoresis in counter-propagating SAW fields for particle separation, Phys. Rev. E, 2021, 103(3): 033104. Z. Y. Ni, G. Y. Xu, J. J. Huang, G. Yao, J. Tu, X. S. Guo*, and D. Zhang*, Lamb wave coupled resonance for SAW acoustofluidics, Appl. Phys. Lett., 2021, 118: 051103. C. H. Yin, G. Z. Wang, K. X. Yang, J. Tu, X. S. Guo*, and D. Zhang*, Thermal strain imaging in vivo using interpolated IQ-images, Ultrasonics, 2020, 110: 106292. G. Y. Xu, Z. Y. Ni, X. Z. Chen, J. Tu, X. S. Guo*, H. Bruus, and D. Zhang*, Acoustic characterization of polydimethylsiloxane for microscale acoustofluidics, Phys. Rev. Appl., 2020, 13(5): 254069. P. F. Fan, C. H. Yin, H. H. Xue, L. Z. Xie, W. Sun, J. Tu, X. S. Guo*, X. Q. Kong, and D. Zhang*, In vivo evaluation of two-dimensional temperature variation in perirenal fat of pigs with B-mode ultrasound, J. Appl. Phys., 2019, 126(8): 084902. Z. Y. Ni#, C. H. Yin#, G. Y. Xu, L. Z. Xie, J. J. Huang, S. L. Liu, J. Tu, X. S. Guo*, and D. Zhang*, Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain, Lab Chip, 2019, 19(16): 2728-2740. S. L. Liu#, Z. Y. Ni#, G. Y. Xu, X. S. Guo*, J. Tu, H. Bruus, and D. Zhang*, Two-Dimensional Mapping Separating the Acoustic Radiation Force and Streaming in Microfluidics, Phys. Rev. Appl. 2019, 11(4): 044031. Z. Y. Jin, L. S. Huo, T. Y. Long, X. S. Guo*, J. Tu, and D. Zhang, An Online Impedance Analysis and Matching System for Ultrasonic Transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2019, 66(3): 591-599. Y. C. Shen, Y. Y. Yang, X. S. Guo*, Y. Shen*, and D. Zhang*, Low-frequency anechoic metasurface based on coiled channel of gradient cross-section, Appl. Phys. Lett., 2019, 114(8): 083501. C. Y. Chen, S. P. Zhang, Z. M. Mao, N. Nama, Y. Y. Gu, P. H. Huang, Y. Jing, X. S. Guo*, F. Costanzo*, and T. J. Huang*, Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics, Lab Chip, 2018, 18(23): 3645-3654. C.H. Li, J. M. Miao, K. X. Yang, X. S. Guo*, J. Tu, P. T. Huang, and D. Zhang*, Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating. J. Appl. Phys., 2018, 123(17): 174906. M. C. Wang, Y. Zhang, C. L. Cai, J. Tu*, X. S. Guo*, and D. Zhang*, Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters, Sci. Rep., 2018, 8: 3885. X.S. Guo, C. L. Cai, G. Y. Xu, Y. Y. Yang, J. Tu*, P. T. Huang, and D. Zhang*, Interaction between cavitation microbubble and cell: A simulation of sonoporation using boundary element method (BEM). Ultrason Sonochem, 2017, 39: 863-871. C. H. Li, Y. Y. Yang, X. S. Guo*, J. Tu, P. T. Huang, F. Q. Li, and D. Zhang*, Enhanced ultrasonic focusing and temperature elevation via a therapeutic ultrasonic transducer with sub-wavelength periodic structure, Appl. Phys. Lett., 2017, 111(5): 053701. S. L. Liu, G. Y. Xu, Z. Y. Ni, X. S. Guo*, L. J. Luo, J. Tu, and D. Zhang*, Quantitative assessment of acoustic pressure in one-dimensional acoustofluidic devices driven by standing surface acoustic waves, Appl. Phys. Lett., 2017, 111(4): 043508. H. L. Wang, F. M. Teng, X. Yang, X. S. Guo*, J. Tu, C. B. Zhang, and D. Zhang*, Preventing microbial biofilms on catheter tubes using ultrasonic guided waves. Sci. Rep., 2017, 7: 616. P. F. Fan#, Y. Zhang#, X. S. Guo#, C. L. Cai, M. C. Wang, D. X. Yang, Y. R. Li, J. Tu, L. A. Crum, and D. Zhang, Cell-cycle-specific Cellular Responses to Sonoporation, Theranostics, 2017, 7(19): 4894-4908. S.Y. Liu, J. Wu, Y. Y. Gu, X. S. Guo*, J. Tu, D. Xu*, and D. Zhang*, Ambient pressure evaluation through sub-harmonic response of chirp-sonicated microbubbles. Ultrasound Med. Biol., 2017, 43(1): 332-340. Z. Lin, X. S. Guo*, J. Tu, J. C. Cheng, J. R. Wu, P. T. Huang, and D. Zhang*, A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures, Appl. Phys. Lett., 2015, 107(11): 113505. Z. Lin, X. S. Guo*, J. Tu, Q. Ma, J. Wu, and D. Zhang*, Acoustic non-diffracting Airy beam, J. Appl. Phys., 2015, 117(10): 104503.

推荐链接
down
wechat
bug