研究领域
Mitochondria are the engine of eukaryotic cellular metabolism. Mitochondria sustain cells with a continuous supply of ATP, replenish metabolic intermediates, and coordinate metabolic flux with numerous aspects of cellular biology. Accordingly, mitochondrial dysfunction is a root cause of devastating diseases, including cancer, neurodegeneration, and diabetes. The Taylor Lab is interested in the molecular mechanisms regulating mitochondrial function and their relationship to disease. Our research program is multidisciplinary, utilizing genetic, biochemical, cellular, and physiological experimental approaches. We have additional interest in problems related to skeletal muscle function and diabetes. Our current research projects focus on novel proteins important for mitochondrial function. The first is on VMS1, a protein that recruits components of the ubiquitin proteasome system to stressed mitochondria to extract damaged proteins for presentation to the proteasome, thereby maintaining mitochondrial protein quality. Thus, VMS1 may be relevant to any disease involving progressive mitochondrial failure. The second is on the mitochondrial pyruvate carrier (MPC), which Dr. Taylor recently co-discovered. Mitochondrial pyruvate uptake is critical for ATP production by the TCA cycle and for generating the synthetic intermediates supporting fat, protein, and carbohydrate metabolism. Therefore, MPC function is essential for normal physiology and its disruption causes diverse and severe metabolic abnormalities. We are interested in discovering the mechanisms regulating the function of the MPC molecule.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Rauckhorst, A. J., Taylor, E. B. (2016). Mitochondrial pyruvate carrier function and cancer metabolism.. Current opinion in genetics & development, 38, 102-109. DOI: 10.1016/j.gde.2016.05.003.
Gray, L. R., Rauckhorst, A. J. & Taylor, E. B. (2016). A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity.. The Journal of biological chemistry, 291(14), 7409-17. DOI: 10.1074/jbc.M115.711663.
Gray, L. R., Sultana, M. R., Rauckhorst, A. J., Oonthonpan, L., Tompkins, S. C., Sharma, A., Fu, X., Miao, R., Pewa, A. D., Brown, K. S., Lane, E. E., Dohlman, A., Zepeda-Orozco, D., Xie, J., Rutter, J., Norris, A. W., Cox, J. E., Burgess, S. C., Potthoff, M. J. & Taylor, E. B. (2015). Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.. Cell metabolism. DOI: 10.1016/j.cmet.2015.07.027.
Gray, L., Tompkins, S. & Taylor, E. (2014). Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci, 71(14), 2577-604. DOI: 10.1007/s00018-013-1539-2.
Gray, L. R., Tompkins, S. C. & Taylor, E. B. (2013). Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci.
Bricker, D. K., Taylor, E. B., Schell, J. C., Orsak, T., Boutron, A., Chen, Y. C., Cox, J. E., Cardon, C. M., Van Vranken, J. G., Dephoure, N., Redin, C., Boudina, S., Gygi, S. P., Brivet, M., Thummel, C. S. & Rutter, J. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science (New York, N.Y.), 337(6090), 96-100.
Chen, Y. C., Taylor, E. B., Dephoure, N., Heo, J. M., Tonhato, A., Papandreou, I., Nath, N., Denko, N. C., Gygi, S. P. & Rutter, J. (2012). Identification of a protein mediating respiratory supercomplex stability. Cell metabolism, 15(3), 348-60.
Taylor, E. B., Rutter, J. (2011). Mitochondrial quality control by the ubiquitin-proteasome system. Biochemical Society transactions, 39(5), 1509-13.
Heo, J. M., Livnat-Levanon, N., Taylor, E. B., Jones, K. T., Dephoure, N., Ring, J., Xie, J., Brodsky, J. L., Madeo, F., Gygi, S. P., Ashrafi, K., Glickman, M. H. & Rutter, J. (2010). A stress-responsive system for mitochondrial protein degradation. Molecular cell, 40(3), 465-80.
Taylor, E. B., An, D., Kramer, H. F., Yu, H., Fujii, N. L., Roeckl, K. S., Bowles, N., Hirshman, M. F., Xie, J., Feener, E. P. & Goodyear, L. J. (2008). Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. The Journal of biological chemistry, 283(15), 9787-96.