当前位置: X-MOL首页全球导师 国内导师 › 王剑威

个人简介

教育经历 [1] 2011.10-2016.5布里斯托尔大学 | 物理 | 博士研究生 | 博士学位 [2] 2008.9-2011.6浙江大学 | 光学工程 | 硕士研究生 | 硕士学位 [3] 2004.9-2008.6浙江大学 | 光学工程 | 本科(学士) | 学士学位 工作经历 [1] 2018.4-至今 北京大学 [2] 2016.5-2018.4量子光学中心 | 布里斯托尔大学

研究领域

Integrated quantum photonic devices and circuits The devices and circuits able to generate, process and detect quantum states of light are at the heart position of implementing quantum protocols and algorithms.We are developing integrated quantum photonic devices and circuits in a range of material systems, for example silicon nanophotonics, a profound platform that is comparable with the CMOS technology and able to monolithically integrate single-photon sources, linear-optic circuits, and single-photon detectors. Integrated quantum photonics, having the high-level of controllability and programmability and the capability of achieving a very large-scale integration of quantum IC [Science 385, 285-291 (2018)], allow unprecedented applications in fundamental science and quantum technologies. Chip-scale quantum communication network Integrated photonics is a well-established technology in the global telecommunication industry, as such it is also natural to adopt integrated photonics for practical quantum communication to transmit and receive encrypted keys. Chip-based quantum communication networks require the coherent transmission, distribution and process of entangled states [e.g, Optica 3, 407-413 (2016)], as well as the coherent trancieving and teleportation of quantum states [e.g, CLEO PDP JTh5C.4 (2019)], in which photons are flying amongst separate chip-scale subsystems. We are developing quantum communication technologies with photonic chips, particularly in silicon that is known comparable with the telecommunication infrastructure and CMOS electronics. We are also seeking a further integration of stationary qubits in matter with flying qubits for quantum information storage in the network. On-chip quantum simulations with photons Quantum simulation is to simulate and predict the behaviors of a complex quantum system by a controllable quantum machine–the system is approximated by an abstract model running in the machine. Such quantum simulator provides a powerful platform to study complex physical and chemical systems, such as computing molecular dynamics [e.g, Science Advances 4, 96946 (2018)], a intractable task in classical computer. A question is how to certificate their simulation results? By measuring the consistency of the model predictions from the simulator with the real experimental data and by estimating their quantum likelihoods, it can efficiently simulate and characterize the underpinning Hamiltonian models and verifying the predictions [Nature Physics 13, 551-555 (2017)]. Quantum computing and information processing Photonics is a leading physical system for the implementation of both specific quantum computation such as Boson sampling and universal one-way quantum computation. The former is a leading candidate for quantum supremacy, while the later shows solid progress towards large-scale quantum computing. We are currently developing scalable on-chip Boson samplers [e.g, Nature Physics 15, 925-929 (2019)] and new chip-scale quantum computing machines [e.g, Nature Photonics 12, 534-539 (2018)]. Distinct to other implementations, manufacturing wafer-scale photonic circuits in silicon needs "near-zero-change" of current CMOS fabrication process. This promises significant enhancement of the quantum information processing capability, given the possibilities of large-scale integration of quantum circuits and processing of large-number of photons.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Yun Zheng*, Chonghao Zhai*, Dajian Liu*, Jun Mao, Xiaojiong Chen, Tianxiang Dai, Jieshan Huang, Jueming Bao, Zhaorong Fu, Yeyu Tong, Xuetong Zhou, Yan Yang, Bo Tang, Zhihua Li, Yan Li, Qihuang Gong, Hon Ki Tsang, Daoxin Dai#, Jianwei Wang#.Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221-226 (2023). Jueming Bao*, Zhaorong Fu*, Tanumoy Pramanik*, Jun Mao*, Yulin Chi*, Yingkang Cao, Chonghao Zhai, Yifei Mao, Tianxiang Dai, Xiaojiong Chen, Xinyu Jia, Leshi Zhao, Yun Zheng, Bo Tang, Zhihua Li, Jun Luo, Wenwu Wang, Yan Yang#, Yingying Peng, Dajian Liu, Daoxin Dai#, Qiongyi He, Alif Laila Muthali, Leif K. Oxenløwe, Caterina Vigliar, Stefano Paesani, Huili Hou, Raffaele Santagati, Joshua W. Silverstone, Anthony Laing, Mark G. Thompson, Jeremy L. O’Brien, Yunhong Ding#, Qihuang Gong, Jianwei Wang#, Very-large-scale integrated quantum graph photonics. Nature Photonics 17, 573-581 (2023). . Yulin Chi*, Jieshan Huang*, Zhanchuan Zhang*, Jun Mao, Zinan Zhou, Xiaojiong Chen, Chonghao Zhai, Jueming Bao, Tianxiang Dai , Huihong Yuan, Ming Zhang, Daoxin Dai, Bo Tang, Yan Yang , Zhihua Li, Yunhong Ding, Leif K. Oxenløwe, Mark G. Thompson, Jeremy L. O’Brien, Yan Li, Qihuang Gong & Jianwei Wang#. A programmable qudit-based quantum processor. Nature Communications 13, 1166 (2022). Tianxiang Dai*, Yutian Ao*, Jueming Bao*, Jun Mao*, Yulin Chi*, Zhaorong Fu, Yilong You, Xiaojiong Chen, Chonghao Zhai, Bo Tang, Yan Yang#, Zhihua Li, Luqi Yuan, Fei Gao, Xiao Lin, Mark G. Thompson, Jeremy L. O’Brien, Yan Li, Xiaoyong Hu#, Qihuang Gong# and Jianwei Wang# ,Topologically protected quantum entanglement emitters. Nature Photonics 16, 248–257 (2022). . Emanuele Pelucchi, Giorgos Fagas, Igor Aharonovich, Dirk Englund, Eden Figueroa, Qihuang Gong, Hannes Hübel, Jin Liu, Chao-Yang Lu, Nobuyuki Matsuda, Jian-Wei Pan, Florian Schreck, Fabio Sciarrino, Christine Silberhorn, Jianwei Wang, and Klaus Joens. The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics 4, 194-208 (2022).. Caterina Vigliar, Stefano Paesani, Yunhong Ding#, Jeremy C. Adcock, Jianwei Wang#, Sam Morley-Short, Davide Bacco, Leif K. Oxenløwe, Mark G. Thompson, John G. Rarity & Anthony Laing#. Error-protected qubits in a silicon photonic chip. Nature Physics 17, 1137–1143 (2021). Xiaojiong Chen*, Yaohao Deng*, Shuheng Liu*, Tanumoy Pramanik, Jun Mao, Jueming Bao, Chonghao Zhai, Tianxiang Dai, Huihong Yuan, Jiajie Guo, Shao-Ming Fei, Marcus Huber, Bo Tang, Yan Yang#, Zhihua Li, Qiongyi He#, Qihuang Gong# & Jianwei Wang#. A generalized multipath delayed-choice experiment on a large-scale quantum nanophotonic chip. Nature Communications 12, 2712 (2021). Jianwei Wang, Fabio Sciarrino, Anthony Laing, Mark G. Thompson. Integrated photonic quantum technologies. Nature Photonics 14, 273–284(2020). Daniel Llewellyn, Yunhong Ding, Imad I. Faruque, Stefano Paesani, Davide Bacco, Raffaele Santagati, Yan-Jun Qian, Yan Li, Yun-Feng Xiao, Marcus Huber, Mehul Malik, Gary Sinclair, Xiaoqi Zhou, Karsten Rottwitt, Jeremy O’Brien, John Rarity, Qihuang Gong, Leif Oxenlowe, Jianwei Wang#, Mark Thompson. Chip-to-chip quantum teleportation and multi-photon entanglement. Nature Physics 16, 148–153(2020). Stefano Paesani, Yunhong Ding#, Raffaele Santagati, Levon Chakhmakhchyan, Caterina Vigliar, Karsten Rottwitt, Leif Oxenløwe, Jianwei Wang#, Mark Thompson#, Anthony Laing#. Generation and sampling of quantum states of light in a silicon chip. Nature Physics 15, 925-929(2019). (Highligted by Nature Physics News and Views). Jianwei Wang*#, Stefano Paesani*, Yunhong Ding*#, Raffaele Santagati, Paul Skrzypczyk, Alexia Salavrakos, Jordi Tura, Remigiusz Augusiak, Laura Mančinska, Davide Bacco, Damien Bonneau, Joshua Silverstone, Qihuang Gong, Antonio Acín, Karsten Rottwitt, Leif Oxenløwe, Jeremy O’Brien, Anthony Laing#, and Mark Thompson#. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285-291 (2018). Raffaele Santagati*, Jianwei Wang*, Antonio Gentile*, Stefano Paesani, Nathan Wiebe, Jarrod McClean, Sam Morley-Short, Peter Shadbolt, Joshua Silverstone, Damien Bonneau, David Tew, Xiaoqi Zhou, Jeremy O’Brien, and Mark Thompson. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Science Advances 4, eaap9646 (2018). Jianwei Wang*#, Stefano Paesani*, Raffaele Santagati*, Sebastian Knauer, Antonio Gentile, Nathan Wiebe#, Maurangelo Petruzzella, Jeremy O’Brien, John Rarity, Anthony Laing, and Mark Thompson#. (#corresponding author). Experimental quantum Hamiltonian learning. Nature Physics 13, 551-555 (2017). Jianwei Wang, Damien Bonneau, Matteo Villa, Josh Silverstone, Raffaele Santagati, Shigehito Miki, Taro Yamashita, Mikio Fujiwara, Masahide Sasaki, Hirotaka Terai, Michael Tanner, Chandra Natarajan, Robert Hadfield, Jeremy O’Brien, and Mark Thompson. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016). Michael Strain*, Xinlun Cai*, Jianwei Wang*, Jiangbo Zhu, David Phillips, Lifeng Chen, Martin Lopez-Garcia, Jeremy O’Brien, Mark Thompson, Marc Sorel, and Siyuan Yu. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nature Communications 5, 4856 (2014). Xinlun Cai, Jianwei Wang, Michael Strain, Benjamin Johnson-Morris, Jiangbo Zhu, Marc Sorel, Jeremy O’Brien, Mark Thompson, and Siyuan Yu. Integrated compact optical vortex beam emitters. Science 338, 363-366 (2012).

推荐链接
down
wechat
bug