个人简介
George Stan is a physical chemist with research interests in computational biophysical chemistry. He received his undergraduate degree in 1994 at the University of Bucharest, Romania. He obtained his PhD in 1999 at the Pennsylvania State University for work on absorption of gases in carbon nanotubes and wetting of alkali surfaces.
His postdoctoral work in the Institute for Physical Science and Technology at the University of Maryland (2000-2001) and the National Institutes of Health (2002-2006) focused on chaperonin mediated protein folding. His research involves application and development of computational methods within the CHARMM molecular modeling program, as well as bioinformatics methods.
研究领域
Research: Computational modeling of biological molecules
Molecular dynamics simulations of chaperonin-assisted protein folding
Protein hydration
Protein-protein interactions
Confinement of biological matter within nanopores
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Kravats, Andrea, Jayasinghe, Manori, & Stan, George (2011). Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase. Proceedings of the National Academy of Sciences of the United States of America 108 (1) 2234-2239.
Jayasinghe, Manori, Shrestha, Pooja, Wu, Xiongwu, Tehver, Riina, & Stan, George (2012). Weak intra-ring allosteric communications of the archaeal chaperonin thermosome revealed by normal mode analysis. Biophysical journal, 103(6), 1285-95.
Jayasinghe, Manori, Tewmey, Cody, & Stan, George (2010). Versatile substrate protein recognition mechanism of the eukaryotic chaperonin CCT. Proteins, 78(5), 1254-65.
Tonddast-Navaei, Sam, & Stan, George (2013). Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine. Journal of the American Chemical Society, 135(39), 14627-36.
S. M. Gatica, M. M. Calbi, G. Stan, R. A. Trasca, and M. W. Cole (2010) Quasi-one dimensional fluids that exhibit higher dimensional behavior, Int. J. Mod. Phys. B. 24(25-26), 5051-59.
H.-Y. Kim, S. M. Gatica, G. Stan, and M. W. Cole (2009) Effects of substrate relaxation on adsorption in pores, J. Low Temp. Phys. 156, 1-8.
O'Brien, Edward P, Stan, George, Thirumalai, D, & Brooks, Bernard R (2008). Factors governing helix formation in peptides confined to carbon nanotubes. Nano letters, 8(11), 3702-8.
Stan, George, Lorimer, George H, Thirumalai, D, & Brooks, Bernard R (2007). Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8803-8.
Stan, George, Brooks, Bernard R, Lorimer, George H, & Thirumalai, D (2006). Residues in substrate proteins that interact with GroEL in the capture process are buried in the native state. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4433-8.
Stan, George, Brooks, Bernard R, & Thirumalai, D (2005). Probing the "annealing" mechanism of GroEL minichaperone using molecular dynamics simulations. Journal of molecular biology, 350(4), 817-29.
Stan, George, Brooks, Bernard R, Lorimer, George H, & Thirumalai, D (2005). Identifying natural substrates for chaperonins using a sequence-based approach. Protein science : a publication of the Protein Society, 14(1), 193-201.
Stan, George, Thirumalai, D, Lorimer, George H, & Brooks, Bernard R (2003). Annealing function of GroEL: structural and bioinformatic analysis. Biophysical chemistry, 100(1-3), 453-67.
S. M. Doyle, S. Shastry, A. N Kravats, Y.-H. Shih, M. Miot, J. R. Hoskins, G. Stan, and S. Wickner, "Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation", J. Mol. Biol. (in press)