个人简介
Dr. Paul Simmonds completed his Ph.D. in semiconductor physics at the University of Cambridge, where he worked with Profs. David Ritchie and Michael Pepper. His research focused on the growth of thin III-V semiconductor films and nanostructures by molecular beam epitaxy (MBE) for studies of electron transport in low-dimensional, high-mobility materials. Dr. Simmonds moved to the US in 2007 to work as a postdoc, first with Prof. Christopher Palmstrøm at the University of Minnesota / University of California, Santa Barbara and then, from early 2009, at Yale University with Prof. Minjoo Larry Lee. Dr. Simmonds’ research at Yale was chiefly based on his discovery that by using tensile strain it is possible to create III-V quantum dots on (110) and (111) surfaces, with potential significance for the fields of quantum computing and spintronics. From September 2011 to September 2014, Dr. Simmonds managed the Integrated NanoMaterials Laboratory at the University of California, Los Angeles. Working with Prof. Diana Huffaker, Dr. Simmonds oversaw research on two interconnected MBE tools configured to grow a range of different semiconductor materials for electronic and photonic applications. Dr. Simmonds was also Chair of the Los Angeles Chapter of the IEEE Photonics Society. Dr. Simmonds joined Boise State University as Assistant Professor in October 2014, with a joint appointment in the Department of Physics and the Micron School of Materials Science & Engineering. He heads the CEN (Collaboratory for Epitaxy of Nanomaterials) focusing on the MBE growth of novel semiconductor nanostructures, dissimilar materials integration, and strained thin-film heterostructures. Dr. Simmonds is a Senior Member of the IEEE.
研究领域
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Molecular beam epitaxy, III-V semiconductors, 2D materials, solid state physics, optoelectronics, thin-films, self-assembly, quantum dots, nanostructures, biaxial strain, band gap engineering